期刊文献+

Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability,thermal management and electromagnetic interference shielding 被引量:1

原文传递
导出
摘要 Along with the integrated and miniaturized development of advanced electronic devices,phase change materials(PCMs)simultaneously with efficient thermal management and high electromag-netic interference(EMI)shielding effectiveness(SE)are ungently demanded.Herein,the shape-stabilized MXene/Ni-platted melamine sponge/Regenerated cellulose/Graphene nanoplate/Polyethylene glycol(MX/Ni@MS/RCG/PEG)composite PCMs comprising hierarchical Ni@MS/RCG and MXene film were fabricated via a facile encapsulation approach.Hierarchical Ni@MS/RCG hybrid aerogel was prepared by electroless plating and sol-gel methods,and MXene film was obtained using vacuum-assisted filtra-tion procedure.The synergistic effect of conductive Ni@MS/RCG networks and tight MXene film endows MX/Ni@MS/RCG/PEG composite PCMs with good shape stability,high cyclic reliability,large latent heat of phase change(154.3 J g^(–1)),excellent thermal conductivity(TC,0.47 W m^(–1)K^(–1))and favorable EMI shield-ing performance(32.7 dB).The TC of acceptable 0.47 W m^(–1)K^(–1)is observed for MX/Ni@MS/RCG-5/PEG at a rather low GNP content of merely 0.39 wt%.In addition,the temperature variation of MX/Ni@MS/RCG-5/PEG is a lot faster than that of pure PEG in the heating/cooling process,revealing the remarkable energy storage and release efficiency for the composite PCMs.This investigation has taken an important step to-wards shape-stabilized composite PCMs with both effective thermal management and high EMI SE for promising applications in electronic packaging and advanced energy.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期132-143,共12页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(No.51963003) the Science and Tech-nology Plan Project of Guizhou Province(No.ZK[2022]Maj019) the Youth Science and Technology Talent Growth Project of Guizhou Province Education Department(No.[2018]106) the Key Project of Fundamental Research in Guizhou Province(No.[2020]1Z044).
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部