期刊文献+

基于莱维飞行的自适应乌鸦搜索算法 被引量:1

Adaptive crow search algorithm based on Levy flight
下载PDF
导出
摘要 针对乌鸦搜索算法易陷入局部最优和位置更新策略具有盲目性的不足,提出一种基于莱维飞行(levy flight)的自适应乌鸦搜索算法,对标准乌鸦搜索算法的感知概率和飞行距离进行动态调整,对乌鸦个体在第二种情况下的位置更新策略进行优化.所提算法引入莱维飞行、经验因子和自适应调整参数机制,动态增加算法前期的全局搜索能力和后期的局部寻优能力.在算法个体发现自己被其他个体跟踪的情况下,采取经验因子和莱维飞行相结合的更新策略来引导其他个体,增强算法个体位置更新的效率,避免个体在最优解附近来回振荡,使得算法快速准确的到达极值点,有效弥补了原始乌鸦搜索算法位置更新的盲目性和收敛速度较慢的不足.通过和其他新型智能优化算法在8个基准测试函数和1个工程应用问题的实验对比,来检验算法的有效性.仿真结果表明,所提算法的寻优平均结果、标准差、收敛性和鲁棒性均优于其他算法,有效避免了位置更新的盲目性,增强了算法的性能效率. Aiming at the shortcomings that crow search algorithm is easy to fall into local optimization and location update strategy is blind,an adaptive crow search algorithm based on Levy flight is proposed,which dynamically adjusts the perception probability and flight distance of the standard crow search algorithm,and optimizes the location update strategy of crow individuals in the second case.The proposed algorithm introduces Levy flight,experience factor and adaptive adjustment parameter mechanism,dynamically increase the global search ability in the early stage and the local optimization ability in the later stage of the algorithm.When the algorithm individual finds that he is tracked by other individuals,it adopts the update strategy of combining empirical factors and Levy flight to guide other individuals,enhance the efficiency of individual location update,avoid individual oscillation around the optimal solution,and make the algorithm reach the extreme point quickly and accurately,it effectively makes up for the blindness of location update and slow convergence speed of the original crow search algorithm.Through the experimental comparison with other new intelligent optimization algorithms in 8 benchmark functions and 1 engineering application problem,the effectiveness of the algorithm is tested.The simulation results show that the optimization average result,standard deviation,convergence and robustness of the proposed algorithm are better than other algorithms,which effectively avoids the blindness of location update and enhances the performance efficiency of the algorithm.
作者 吴宇昂 李永胜 宣士斌 代敏君 苏伊琳 WU Yuang;LI Yongsheng;XUAN Shibin;DAI Minjun;SU Yilin(College of electronic information,Guangxi Minzu University,Nanning 530006,China;College of artificial intelligence,Guangxi Minzu University,Nanning 530006,China)
出处 《微电子学与计算机》 2023年第3期10-19,共10页 Microelectronics & Computer
基金 国家自然科学基金资助项目(61866003)。
关键词 智能优化 乌鸦搜索算法 莱维飞行 自适应步长 经验因子 intelligent optimization crow search algorithm levy flight adaptive step size experience factor
  • 相关文献

参考文献4

二级参考文献15

共引文献43

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部