期刊文献+

基于SMA-Elman的IGBT寿命预测研究

Research on IGBT life prediction based on SMA-Elman
下载PDF
导出
摘要 绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)作为功率变换器的重要组成部分,其剩余使用寿命的预测极为重要.针对IGBT的剩余使用寿命问题,提出了利用黏菌优化算法(slime mould algorithm,SMA)优化Elman神经网络实现权值和阈值的自适应选择,并将其用于IGBT的寿命预测.首先,对NASA研究中心老化试验数据集中的栅射极关断电压尖峰峰值进行平滑处理.其次,对处理后的数据进行时域特征提取.再次,用核主成分分析(kernel principle component analysis,KPCA)进行优选降维。最后,利用SMA-Elman神经网络模型实现IGBT的寿命预测.结果表明,提出的SMA-Elman神经网络模型相比Elman、BP神经网络及SVR模型具有更优的性能,均方误差为0.021%,均方根误差为0.014,拟合度为0.998,可以更好地实现IGBT剩余使用寿命的预测. The insulated gate bipolar transistor(IGBT)is an important part of power converter,and the prediction of its remaining service life is very important.In response to the remaining service life of IGBT,the method of optimizing the adaptive options of the Elman neural network implementation of the Elman neural network is optimized by using the slime mould algorithm(SMA),and it is used for the life prediction of IGBT.Firstly,the peak of the gate emitter turn-off voltage in the aging test data set of NASA research center is smoothed.Secondly,the time domain feature is extracted from the processed data.Thirdly,the kernel principle component analysis(KPCA)is used for optimization dimensionality reduction.Finally,the SMA-Elman neural network model is used to predict the lifetime of IGBT.The results show that the proposed SMA-Elman neural network has better performance than Elman and BP neural network and SVR,the mean square error is 0.021%,the root mean square error is 0.014,the fitting degree is 0.998,and it can better predict the remaining service life of IGBT.
作者 周昂 帕孜来·马合木提 李高原 赵智强 刘行行 ZHOU Ang;PAZILAI Mahemuti;LI Gaoyuan;ZHAO Zhiqiang;LIU Hanghang(School of Electrical Engineering,Xinjiang University,Urumqi 830017,China)
出处 《微电子学与计算机》 2023年第3期117-124,共8页 Microelectronics & Computer
基金 国家自然科学基金项目(61963034)。
关键词 绝缘栅双极晶体管 寿命预测 黏菌优化算法 ELMAN神经网络 时域特征 insulated gate bipolar transistor(IGBT) life prediction slime mould algorithm(SMA) Elman neural network time domain characteristics
  • 相关文献

参考文献7

二级参考文献67

  • 1游航航,余敏建,吕艳,杨海燕,韩其松.基于改进灰狼算法优化的UKF在空战轨迹预测中的应用[J].战术导弹技术,2020(1):91-98. 被引量:7
  • 2李文武,石强,王凯,程雄.基于变分模态分解和深度门控网络的径流预测[J].水力发电学报,2020,39(3):34-44. 被引量:44
  • 3邓带雨,李坚,张真源,滕予非,黄琦.基于EEMD-GRU-MLR的短期电力负荷预测[J].电网技术,2020,44(2):593-602. 被引量:131
  • 4唐勇.大容量特种高性能电力电子系统中器件模型理论研究[D].武汉:海军工程大学电气工程学院,2010.
  • 5Bouarroudj M,Khatir Z,Ousten J P,et al.Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions[J].Microelectronics Reliability,2007,47 (9/10/11:1719-1724.
  • 6Smet V,Forest F,Huselstein J J,et al.Ageing and failure modes of IGBT modules in high temperature power cycling[J].IEEE Transactions on Industrial Electronics,2011,58 (10):4931-4941.
  • 7Khatibi G,Wroczewski W,Weiss B,et al.A fast mechanical test technique for life time estimation of microjoints[J].Microelectronics Reliability,2008,48 (11/12):1822-1830.
  • 8Yin C Y,Lu H,Musallam M,et al.A physics-of-failure based prognostic method for power modules[C]//Proceedings of 2008 l0th Electronics Packaging Technology Conference.Piscataway:IEEE Computer Society,2008:1190-1195.
  • 9Patil N,Das D,Goebel K,et al.Identificaiton of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]// Proceedings of 2008 International Conference on Prognostics and Health Management.Piscataway:IEEE Computer Society,2008.
  • 10Sauveplane J B,Tounsi P,Scheid E,et al.3D electrothermal investigations for reliability of ultra low ON state resistance power MOSFET[J].Microelectronics Reliability,2008,48(8/9):1464-1467.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部