期刊文献+

球形演化极限学习机在药物—靶标相互作用智能预测中的应用 被引量:1

Application of Spherical Evolution Extreme Learning Machine in Intelligent Prediction of Drug Target Interaction
下载PDF
导出
摘要 为解决药物研发中湿法实验耗时长且高成本等问题,采用机器学习预测药物-靶标相互作用。同时,为解决机器学习在建立药物-靶标相互作用模型时,受到分类器的类不平衡和参数优化等各种问题的制约。文章提出了一个基于球形演化极限学习机的药物-靶相互作用预测方法(SEELM-DTI),该方法主要使用筛选法选择高置信负样本、利用球形演化算法对极限学习机的参数进行优化。该研究将SEELM-DTI与SELF-BLM、NetLapRLS、WNN-GIP、SPLCMF、BLM-NII在基准数据集中进行试验比较,评价指标为AUC与AUPR。实验结果表明:SEELM-DTI的性能和效果优于其他基准算法,并且解决了类不平衡和参数优化问题,最后在常用的多个药物数据库上验证了SEELM-DTI预测药物-靶标相互作用的效果。 To solve the problems of time-consuming and costly wet experiments for drug development,machine learning has been applied to the prediction of drug-target interactions.At the same time,in order to solve the constraints of machine learning in building drug-target interaction models,it is subject to various problems such as class imbalance of classifiers and parameter optimization.The paper proposes a drug-target interaction prediction method(SEELM-DTI)based on a spherical evolution extreme learning machine,which mainly uses a screening method to select high confidence negative samples and a spherical evolution to optimize the parameters of the extreme learning machine.The researcn compared SEELM-DTI with SELF-BLM,NetLapRLS,WNN-GIP,SPLCMF,BLM-NII in a benchmark dataset and evaluated the metrics of AUC and AUPR.The experimental results showed that the SEELM-DTI outperformed other benchmark algorithms and solved the class imbalance and parameter optimization.Finally,the effectiveness of SEELM-DTI in predicting drug-target interactions was validated on several commonly used drug databases.
作者 胡苓芝 傅城州 蔡永铭 杨进 唐德玉 HU Lingzhi;FU Chengzhou;CAI Yongming;YANG Jin;TANG Deyu(College of Medical Information Engineering,Guangdong Pharmaceutical University,Guangzhou 510006,China;Pazhou Lab,Guangzhou 510335,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期121-128,共8页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61976239) 广东省自然科学基金项目(2020A1515010783) 广东省普通高校青年创新人才类项目(2019KQNCX060)。
关键词 药物靶向相互作用 药物发现 极限学习机 球形搜索 类不平衡 drug-target interactions drug discovery extreme learning machine spherical search class imbalance
  • 相关文献

参考文献1

二级参考文献10

  • 1Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 2Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 3Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 4Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 5Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 6Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 7Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 8Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.
  • 9Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53.
  • 10Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.

共引文献125

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部