摘要
为解决药物研发中湿法实验耗时长且高成本等问题,采用机器学习预测药物-靶标相互作用。同时,为解决机器学习在建立药物-靶标相互作用模型时,受到分类器的类不平衡和参数优化等各种问题的制约。文章提出了一个基于球形演化极限学习机的药物-靶相互作用预测方法(SEELM-DTI),该方法主要使用筛选法选择高置信负样本、利用球形演化算法对极限学习机的参数进行优化。该研究将SEELM-DTI与SELF-BLM、NetLapRLS、WNN-GIP、SPLCMF、BLM-NII在基准数据集中进行试验比较,评价指标为AUC与AUPR。实验结果表明:SEELM-DTI的性能和效果优于其他基准算法,并且解决了类不平衡和参数优化问题,最后在常用的多个药物数据库上验证了SEELM-DTI预测药物-靶标相互作用的效果。
To solve the problems of time-consuming and costly wet experiments for drug development,machine learning has been applied to the prediction of drug-target interactions.At the same time,in order to solve the constraints of machine learning in building drug-target interaction models,it is subject to various problems such as class imbalance of classifiers and parameter optimization.The paper proposes a drug-target interaction prediction method(SEELM-DTI)based on a spherical evolution extreme learning machine,which mainly uses a screening method to select high confidence negative samples and a spherical evolution to optimize the parameters of the extreme learning machine.The researcn compared SEELM-DTI with SELF-BLM,NetLapRLS,WNN-GIP,SPLCMF,BLM-NII in a benchmark dataset and evaluated the metrics of AUC and AUPR.The experimental results showed that the SEELM-DTI outperformed other benchmark algorithms and solved the class imbalance and parameter optimization.Finally,the effectiveness of SEELM-DTI in predicting drug-target interactions was validated on several commonly used drug databases.
作者
胡苓芝
傅城州
蔡永铭
杨进
唐德玉
HU Lingzhi;FU Chengzhou;CAI Yongming;YANG Jin;TANG Deyu(College of Medical Information Engineering,Guangdong Pharmaceutical University,Guangzhou 510006,China;Pazhou Lab,Guangzhou 510335,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2023年第1期121-128,共8页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(61976239)
广东省自然科学基金项目(2020A1515010783)
广东省普通高校青年创新人才类项目(2019KQNCX060)。
关键词
药物靶向相互作用
药物发现
极限学习机
球形搜索
类不平衡
drug-target interactions
drug discovery
extreme learning machine
spherical search
class imbalance