期刊文献+

高温H_(2)O-H_(2)系统透平设计

Turbine design for high temperature H_(2)O-H_(2) system
下载PDF
导出
摘要 针对高温镁水制氢过程中产生的高温水蒸汽-氢气(H_(2)O-H_(2))二元混合气体,为实现余热回收,提高能源利用效率,提出一种适用于高温下H_(2)O-H_(2)二元混合气体的透平设计。采用响应曲面法与计算流体动力学耦合的优化设计方法(RSM-CFD方法),设计出适用于高温H_(2)O-H_(2)混合工质的单级汽轮机叶栅结构。并应用计算流体动力学软件(CFX)对该单级汽轮机叶栅结构进行三维气动性能分析,结果表明:高温H_(2)O-H_(2)混合透平内功率为1500 W,等熵效率达到70%,该混合工质透平气动性能优良,可满足设计要求。该设计方法对其他混合工质透平设计具有一定的指导作用。 High temperature water vapor-hydrogen(H_(2)O-H_(2))binary mixed gas will be produced in the process of hydrogen production from high-temperature magnesium water.A turbine design suitable for H_(2)O-H_(2)binary mixed gas at high temperature is proposed to realize waste heat recovery and improve energy utilization efficiency.A response surface method coupled with computational fluid dynamics(RSM-CFD method)is used to design a structure of single-stage turbine for high temperature H_(2)O-H_(2)mixed working medium.The three-dimensional aerodynamic performance of the structure of single-stage turbine is analyzed by computational fluid dynamics software(CFX).The results show that the internal power of high-temperature H_(2)O-H_(2)mixed turbine is 1500 W and the isentropic efficiency reaches 70%,indicating that the mixed working medium turbine has excellent aerodynamic performance which meets the design requirements.The design method has a certain guiding role in the design of other mixed refrigerant turbines.
作者 尉良川 李南宜 李梦馨 郭冰 WEI Liangchuan;LI Nanyi;LI Mengxin;GUO Bing(College of Mechanical Engineering,Qinghai University,Xining 810016,China)
出处 《青海大学学报》 2023年第1期8-14,共7页 Journal of Qinghai University
基金 国家自然科学基金项目(52005282) 青海省科学技术厅项目(2021-ZJ-954Q)。
关键词 H_(2)O-H_(2)混合工质 轴流透平设计 响应曲面试验 三维气动性能分析 H_(2)O-H_(2) mixed working medium axial turbine design response surface test 3D aerodynamic performance analysis
  • 相关文献

参考文献7

二级参考文献38

  • 1孙宁,马凡华.氢内燃机的发展现状和动向[J].车用发动机,2006(2):1-5. 被引量:14
  • 2SHIH T P, LIN Y L. Controlling secondary-flow structure by leading-edge airfoil fillet and inlet swirl to reduce aerody- namic loss and surface heat transfer[C]//ASME Turbo Expo 2002: Power for Land, Sea, and Air. The Netherlands: ASME, 2002: Paper No. GT 2002-30529.
  • 3ZESS G, THOLE K A. Computational design and experi- mental evaluation of using a leading edge fillet on a gas tur- bine vane[J]. Journal of Turbomachinery, 2002, 124 (2): 167-75.
  • 4LETHANDER A T. Assessment of a leading edge fillet for decreasing vane endwall temperatures in a gas turbine engine [D]. Montgomery, Virginia: Virginia Polytechnic Institute and State University, 2003.
  • 5SAUER H, MULLER R, VOGELER K. Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall[J]. Journal of Turbomachinery, 2001, 123(2) :207-213.
  • 6BECZ S, MAJEWSKI M, LANGSTON L. Leading edge modification effects on turbine cascade endwall loss[C]// ASME Turbo Expo 2003. Atlanta, Georgia: ASME, 2003: Paper No. GT2003-38898.
  • 7BECZ S, MAJEWSKI M S, LANGSTON L S. An experi- mental investigation of contoured leading edges for secondary flow loss reduction[C]// ASME Turbo Expo 2004: Power for Land, Sea, and Air. Vienna, Austria: ASME,2004:Pa- per No. GT2004-53964.
  • 8PIERINGER P, SANZ W. Influence of the fillet between blade and casing on the aerodynamic performance of a tran- sonic turbine vane[C]// ASME Turbo Expo 2004:Power for Land, Sea, and Air, Vienna, Austria: ASME, 2004: Paper No. GT 2004-53119.
  • 9竺晓程,王红涛,周代伟,阳虹,杜朝辉.汽轮机低压缸变工况特性的数值研究[J].热力透平,2008,37(1):51-53. 被引量:11
  • 10康顺,孙丽萍.叶根倒角对离心叶轮气动性能的影响[J].工程热物理学报,2009,30(1):41-43. 被引量:20

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部