期刊文献+

基于多尺度卷积和混合注意力机制的情绪脑电识别研究 被引量:1

Emotion EEG recognition based on Multi-scale convolution and hybrid attention mechanism
下载PDF
导出
摘要 建立了基于深度学习框架的情绪识别模型——M-Attention-EmotionNet。采用多尺度卷积提取不同尺度的特征。为避免特征冗余,引入了混合域注意力机制,从通道和空间两个维度对特征进行赋权。在DEAP数据集上,首先提取预处理后脑电信号不同频带的功率谱密度特征作为模型的输入,然后被分类。实验结果表明,该模型在唤醒和效价两个维度上分类准确率分别为95.64%和96.49%,同时,在四分类和八分类的细粒度情感分类上,平均准确率分别为90.89%和89.22%。 An emotion recognition model, M-Attention-EmotionNet, is built based on deep learning framework. Multi-scale convolution is applied to extract features of different scales. A hybrid domain attention mechanism is introduced to avoid feature redundancy, and each dimension weights the features to characterize the features. On the DEAP dataset, power spectral density features of different frequency bands are extracted from the pre-processed EEG signals as the input of the model to be classified. The experimental results show that the classification accuracy rates of the model in Arousal and Valence dimensions are 95.64% and 96.49% respectively. In fine-grained emotion classification of four categories and eight categories, the average accuracy rates are 90.89% and 89.22%.
作者 陶勇 龙多 TAO Yong;LONG Duo(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China;School of Management,Suqian University,Suqian 223800,China;Jilin Province Soft Science Research Institute,Changchun 130051,China)
出处 《长春工业大学学报》 CAS 2023年第1期15-24,共10页 Journal of Changchun University of Technology
基金 国家自然科学基金项目(12026430) 吉林省教育厅项目(JJKH20210716KJ) 吉林省科技厅项目(20200403182SF、20210101149JC)。
关键词 功率谱密度 多尺度卷积 混合域注意力机制 power spectral density multiscale convolution mixed domain attention mechanism
  • 相关文献

参考文献1

共引文献8

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部