期刊文献+

基于车流量数据的SARIMA和LSTM组合模型的比较研究

Comparative study of SARIMA and LSTM combined models based on a traffic flow data
下载PDF
导出
摘要 针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预测分析,通过与SARIMA、LSTM两种单模型拟合效果的比较分析表明:1)对含周期性和长记忆性的数据,组合模型的预测效果更优;2)基于MA滤波方法的组合模型三比其他两种方法在提升模型预测精度上表现更好。 For the traffic flow data with various characteristics such as periodicity and long memory,the fitting effect of single SARIMA or LSTM model is often not ideal,but the combined model can make up for the shortcomings of single model.Combined with linear and nonlinear prediction methods,we proposed to use three SARIMA-LSTM combined models to predict and analysis the traffic flow data.Comparing with the single SARIMA and LSTM models showed that:1)For the data containing periodicity and long memory,the prediction effect of the combined model was better;2)The combined model 3 based on MA filtering method performs better than the other two methods in improving the prediction accuracy.
作者 李贺宇 南润 胡茜 LI Heyu;NAN Run;HU Qian(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
出处 《长春工业大学学报》 CAS 2023年第1期72-77,共6页 Journal of Changchun University of Technology
基金 吉林省教育厅人文社科研究项目(JJKH20220649)。
关键词 季节性差分自回归滑动平均模型(SARIMA) 长短期记忆网络(LSTM) MA滤波 车流量预测 SARIMA(Seasonal Auto Regressive Integrated Moving Average) LSTM(Long and Short Term Memory network) MA filtering forecast of traffic flow
  • 相关文献

参考文献5

二级参考文献18

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部