摘要
Boruta算法是一种新的特征选择算法,被设计成一个随机森林分类算法的包装器,包装算法的不同将导致不同的效果。对LightGBM算法进行包装,针对土耳其音乐数据集,使用随机森林、XGBoost以及LightGBM算法进行分类预测,通过计算准确率、Kappa系数及海明距离来判断各算法在该数据集上的适用性,结果显示,其性能优于使用随机森林和XGBoost算法生成的包装器。
Boruta algorithm is a new feature selection algorithm, which is designed as a wrapper of random forest classification algorithm. Different packaging algorithms will lead to different effects. The LightGBM algorithm is packaged. For the Türkiye music dataset, random forest, XGBoost and LightGBM algorithms are used for classification prediction. The applicability of each algorithm on the dataset is judged by calculating the accuracy, Kappa coefficient and Hamming distance. The results show that its performance is better than that of the wrapper generated using random forest and XGBoost algorithms.
作者
马晓菲
徐平峰
MA Xiaofei;XU Pingfeng(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
出处
《长春工业大学学报》
CAS
2023年第1期78-84,共7页
Journal of Changchun University of Technology
基金
吉林省科技厅项目(20210101152JC)。