期刊文献+

改进的Boruta算法在音乐情感研究中的应用

Application of improved Boruta algorithm in music emotion research
下载PDF
导出
摘要 Boruta算法是一种新的特征选择算法,被设计成一个随机森林分类算法的包装器,包装算法的不同将导致不同的效果。对LightGBM算法进行包装,针对土耳其音乐数据集,使用随机森林、XGBoost以及LightGBM算法进行分类预测,通过计算准确率、Kappa系数及海明距离来判断各算法在该数据集上的适用性,结果显示,其性能优于使用随机森林和XGBoost算法生成的包装器。 Boruta algorithm is a new feature selection algorithm, which is designed as a wrapper of random forest classification algorithm. Different packaging algorithms will lead to different effects. The LightGBM algorithm is packaged. For the Türkiye music dataset, random forest, XGBoost and LightGBM algorithms are used for classification prediction. The applicability of each algorithm on the dataset is judged by calculating the accuracy, Kappa coefficient and Hamming distance. The results show that its performance is better than that of the wrapper generated using random forest and XGBoost algorithms.
作者 马晓菲 徐平峰 MA Xiaofei;XU Pingfeng(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
出处 《长春工业大学学报》 CAS 2023年第1期78-84,共7页 Journal of Changchun University of Technology
基金 吉林省科技厅项目(20210101152JC)。
关键词 Boruta LightGBM 特征提取 音乐情感 Boruta LightGBM feature selection musical emotion
  • 相关文献

参考文献5

二级参考文献33

  • 1纪正飚,王吉林,赵力.基于模糊K近邻的语音情感识别[J].微电子学与计算机,2015,32(3):59-62. 被引量:10
  • 2Vapnik V N. Statistical learning theoryEM:. New York Wiley, 1998.
  • 3Christopher J C Burges. A tutorial on support vector machines for pattern recognitionrJ:. Data Mining and Knowledge, 1998,2(2) : 121-167.
  • 4Huang H P, Liu Y H, Fuzzy support vector machines for pattern recognition and data mining [J:. Interna- tional Journal of Fuzzy Systems, 2002,4(3) : 826-835.
  • 5Perez M, Rubin D M, Scott L E, et al. A hybrid fuzzy- SVM classifier, applied to gene expression profiling for automated leukaemia diagnosis EC://Proceedings of the IEEE Conference Israel. Eilat, Israel: IEEE, 2008.
  • 6杨铭.基于模糊k-最近邻规则的葛根类药材的模式识别[J].数理医药学杂志,2007,20(6):839-841. 被引量:4
  • 7Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for Axis I DSM-IV Disorders. Biometrics Research Department: New York State Psychiatric Institute; 1994.
  • 8Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 2960; 20(1): 37-46.
  • 9Duberstein PR, Ma Y, Chapman BP, Conwell Y, McGriff J, Coyne JC, et al. Detection of depression in older adults by family and friends: distinguishing mood disorder signals from the noise of personality and everyday life. Int Psychogerietr. 2011; 23(4): 634-643. doi: http://dx.doi.org/10.1017/ $1041610210001808.
  • 10Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. Chapman & HalI/CRC; 2012.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部