期刊文献+

平面上面积长度具有单调性的闭凸曲线流及其应用

Closed-convex Curve Flow with Monotonicity of Area Length on the Plane
下载PDF
导出
摘要 研究了速度和函数中含有支撑函数的闭凸曲线非局部流,在非局部项可微函数的不同取值情况下,给出了演化曲线面积和长度对应的单调性,得到了演化曲线保持闭凸性,光滑闭凸曲线在该流下存在唯一解且最终收敛于一个圆.特别地,通过该曲线收缩流给出了平面上Ros定理的加强形式. In this paper,the non-local flow of the closed convex curve with support function in the velocity function is studied,and the monotonicity corresponding to the area length of the evolution curve is given under the different values of the non-local term differentiable function,and the evolution curve maintains the closed convexity,and the smooth closed convex curve has a unique solution under the flow and finally converges to a circle.In particular,the contraction flow through this curve gives a strengthened form of Ros′s theorem on the plane.
作者 张永志 李亚尊 郭顺滋 ZHANG Yongzhi;LI Yazun;GUO Shunzi(School of Mathematics,Yunnan Normal University,Kunming 650500,China)
出处 《云南师范大学学报(自然科学版)》 2023年第2期19-24,共6页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助项目(12261105).
关键词 非局部流 平面上Ros定理 闭凸曲线 Non-local flow Ros′s theorem on the plane Closed-convex curves
  • 相关文献

参考文献2

二级参考文献24

  • 1Burago Y. D., Zalgaller V. A., Geometric Inequalities, New York: Springer-Verlag, 1988.
  • 2Zhou J., On the Willmore deficit of convex surfaces, Lectures in Appl. Math. of Amer. Math. Soc., 1994, 8: 279-287.
  • 3Zhou J., On Willmore inequalities for submanifolds, Canadian Mathematical Bulletin, 2007, 50(3): 474-480.
  • 4Zhou J., The Willmore functional and the containment problem in R^4, Science in China Series A: Mathematics, 2007, 50(3): 325-333.
  • 5Zhou J., On Bonnesen-Type inequalities, Acta Mathematiea Siniea, Chinese Series, 2006, 50(6): 1397-1402.
  • 6Zhou J., Chen F., The Bonnesen-type inequalities in a plane of constant curvature, Jouunal of Korean Math. Seo., 2007, 44(6): 1363-1372.
  • 7Zhou J., New curvature inequalities for curves, Inter. J. of Math., Comp. Sci. & Appl., 2007, 1(1/2): 145-147.
  • 8Zhang G., Zhou J., Containment Measures in Integral Geometry, Integral Geometry and Convexity, Singapore: World Scientific, 2005.
  • 9Montiel S., Ros A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvature, Diff. Geom., Pitman Monogr Surveys Pure Appl. Math., Longman Sci. Tech, Harlow, 1991, 52: 279-296.
  • 10Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8): 731-756.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部