期刊文献+

应用神经网络与声纹识别的锂电池运行状态预警 被引量:1

Early Warning System of Lithium Battery Running State Based on Neural Network and Voiceprint Recognition
下载PDF
导出
摘要 为了提高锂电池储能预警能力,结合边缘计算技术设计了一种锂电池储能预警系统。采用多模态锂电池声纹识别装置采集锂电池运行过程中发出的声音特征,并对声纹特征参数进行提取,计算出声纹信号的功率谱。在锂电池声纹识别装置中使用了FPGA芯片和硬件加速器,通过构建BP-SNN融合神经网络的故障预警模型结合反向传播神经网络与脉冲神经网络,利用特定的神经元模型进行时间信息的计算与传递,从而对锂电池监测数据的时间序列进行有效处理,提高锂电池故障预警能力。 In order to improve the early warning ability of lithium battery energy storage,an early warning system of lithium battery energy storage is designed by combining edge computing technology.A multi-mode voiceprint recognition device for lithium battery is used to collect the sound features emitted during the running of lithium battery,extract the voiceprint feature parameters,and calculate the power spectrum of the voiceprint signal.The FPGA chip and hardware accelerator are used in the voice print recognition device of lithium battery.By constructing the fault warning model of BP-SNN fusion neural network,combining the back-propagation neural network and pulse neural network,the time information is calculated and transmitted by the specific neuron model,so that the time series of lithium battery monitoring data can be processed effectively,and improve the lithium battery fault warning capability.
作者 谢凌东 王丽鹏 周宏辉 翁东雷 杨平 钟良亮 Xie Lingdong;Wang Lipeng;Zhou Honghui;Weng Donglei;Yang Ping;Zhong Liangliang(Ningbo Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd.,Ningbo 315012,China;Ningbo Electric Power Design Institute Co.,Ltd.)
出处 《单片机与嵌入式系统应用》 2023年第4期45-49,共5页 Microcontrollers & Embedded Systems
基金 国网浙江省电力有限公司双创项目—锂离子储能站早期预警与安全联动策略研究(HYJL-2112117)。
关键词 锂电池储能 边缘计算 声纹识别 脉冲神经网络 反向传播 lithium battery energy storage edge computing voiceprint recognition pulse neural network backpropagation
  • 相关文献

参考文献8

二级参考文献44

共引文献45

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部