摘要
为了对列车司机操控岗位行车人员在行车过程中的疲劳情况进行实时监测,利用基于ESP32的开发板、心电监测前端模块AD8232和后端处理模块树莓派开发了列车司机心电图心率检测设备。使用自适应滤波器和中值滤波分别对采集、放大和传输过程中产生的电力线干扰和基线漂移进行抑制。然后使用Pan-Tompkins算法对滤波预处理后的心电信号波形进行检测,进行HRV时域和频谱特征分析,获得RR间期的平均值、理论标准差、功率谱密度等指标。系统测试与数据分析结果表明,该设备可以稳定采集心电信号,获取到高质量的心电信号,具有良好的干扰抑制能力,波形检测精确度较好、灵敏度较高。实现了针对列车行车过程中复杂场景的心电采集、降噪和分析。
In order to monitor the fatigue of train drivers in the driving process in real time,the ECG and heart rate detection equipment for train drivers was developed using the ESP32 development board,the ECG monitoring front-end module AD8232 and the back-end processing module Raspberry Pi.Adaptive filter and median filter were used to suppress the power line interference and baseline drift generated in the process of acquisition,amplification and transmission.Then Pan-Tompkins algorithm was used to detect the ECG signal waveform after filtering and preprocessing,and HRV time domain and spectrum characteristics was analyzed to obtain the average value of RR interval,theoretical standard deviation,power spectral density and other indicators.The results of system test and data analysis show that the equipment can stably collect ECG signals,obtain high-quality ECG signals,have good interference suppression ability,and have good waveform detection accuracy and high sensitivity.ECG acquisition,noise reduction and analysis of complex scenes during train operation are realized.
作者
江跃龙
甘雨亮
刘梓良
Jiang Yuelong;Gan Yuliang;Liu Ziliang(School of Information Engineering,Guangzhou Railway Polytechnic,Guangzhou 510430,China;Guangdong University of Science and Technology,Dongguan,Guangdong 523083,China)
出处
《机电工程技术》
2023年第3期101-105,共5页
Mechanical & Electrical Engineering Technology
基金
2021年广东省科技创新战略专项资金(大学生科技创新培育项目)(编号:pdjh2021b0873)
2021年广州市基础研究计划基础与应用基础研究项目(编号:202102080153)
2021年院级教科研项目(编号:GTXYY2114)
2022年广东省科技创新战略专项资金(大学生科技创新培育项目)(编号:pdjh2022a0954)。
关键词
心电信号
心电分析
软件滤波
去噪处理
ECG signal
ECG analysis
software filtering
denoising processing