期刊文献+

基于可编程摩擦电原理的晃动式脉冲发生器

Shaking Pulse Generator Based on Programmable Triboelectric Nanogenerators
下载PDF
导出
摘要 摩擦纳米发电机具有结构简单、适用性广的优点,近年来是热门的研究内容。但在实际应用中,摩擦纳米发电机仍面临诸多技术难题:传统摩擦纳米发电机的能量来自摩擦产生的电荷,但摩擦过程中产生的热量会转换成内能,这极大程度降低了能量转换效率,且容易损耗摩擦层材料,进而影响摩擦发电机的耐久性;由于物理接触的摩擦力存在,其机械结构需要较大的外界驱动力,当外界只有较为轻微的机械晃动(如人走路)时,难以有效驱动相应的机械结构,无法实现高频操作;由于摩擦力和器件输出能力均与器件的摩擦面积成正比,因此多层堆叠的器件会随着有效面积的增大而难以驱动。该文基于可编程摩擦纳米发电机的原理,提出了一种晃动式脉冲发生器,通过摇晃小尺寸的器件可实现百伏级的脉冲电压输出。即使器件的摩擦层材料相同,如聚四氟乙烯薄膜,仍能实现较高的电压输出,且摩擦层不需要接触式摩擦,可将器件的摩擦能量损耗最小化,降低驱动器件所需的能量阈值,提高能量转化效率。 Nowadays,triboelectric nanogenerators have shown their potential in energy harvesting research with far-reaching impacts,since they have simple structure and wide applicability.However,several drawbacks have yet to be overcome for further extension of its application and commercialization.One major issue is friction,the origin of energy generation and a major factor in limiting energy conversion efficiency.The friction induces energy loss by heat dissipation and also causes the loss of friction layers,lowering the device’s durability.Meanwhile,the friction also increases the threshold force required to drive the device.A multi-layer stacked device with increased friction area will be difficult to be powered by slight shaking generated by wind or human walking.This study proposes a shaking pulse generator based on the principle of programmable Triboelectric Nanogenerator to solve the above-mentioned issues.Even if the material of the friction layers is the same,such as the PTFE film,hundreds of volts can still be achieved.Unlike the traditional theory,there is no real contact friction which minimizes energy loss,reduces driving energy,and improves energy conversion efficiency.
作者 岳文基 余守骏 阮越 董鹏 陈支通 宋冰 王昊 YUE Wenji;YU Shoujun;RUAN Yue;DONG Peng;CHEN Zhitong;SONG Bing;WANG Hao(Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;The Wellcome-MRC Institute of Metabolic Science,University of Cambridge,Cambridge CB20QQ,UK;Howard Hughes Medical Institute/Janelia Research Campus,Ashburn,VA 20147,USA;National Innovation Center for Advanced Medical Devices,Shenzhen 518000,China)
出处 《集成技术》 2023年第2期64-74,共11页 Journal of Integration Technology
基金 广东省基础与应用基础研究项目(2019A1515110843,2022A1515011129) 深圳市国际合作项目(GJHZ20200731095206018)。
关键词 可编程摩擦电原理 Bennet倍增电路 脉冲发生器 programmable triboelectric nanogenerators Bennet doubler pulse generator
  • 相关文献

参考文献2

二级参考文献28

  • 1O'Regan, B.; Gritzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
  • 2Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043-1053.
  • 3Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532-543.
  • 4Wang, S. H.; Lin, L.; Wang, Z. L. Tdboelectfic nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436-462.
  • 5Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxidenanowire arrays. Science 2006, 312, 242-246.
  • 6Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809-813.
  • 7Williams, C. B.; Shearwood, C.; Harradine, M. A., Mellor, P. H.; Birch, T. S.; Yates, R. B. Development of an electromagnetic micro-generator. IEEE Proc. Circ. Dev. Syst. 2001, 148, 337-342.
  • 8Beeby, S. P.; Torah, R. N.; Tudor, M. J.; Glynne-Jones, P.; O'Dormell, T.; Saha, C. IL; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257-1265.
  • 9Jefimenko, O. D.; Walker, D. K. Electrostatic current generator having a disk electret as an active element. 1EEE Trans. lnd. Appl. 1978,1A-14, 537-540.
  • 10Basset, P.; Galayko, D.; Paracha, A. M.; Marry, F.; Dudka, A.; Bourouina, T. A batch-fabricated and eleetret-free silicon electrostatic vibration energy harvester, d. Micromech. Microeng. 2009, 19, 115025.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部