摘要
以邻联甲苯胺和对苯二甲醛为原料制备席夫碱OTTP,并在席夫碱中掺杂不同比例的菲咯啉铜配合物,合成了菲咯啉铜配位席夫碱基导电聚合物[Cu(Phen)Cl2]X-OTTP(X为席夫碱与菲咯啉铜配合物的物质的量之比,X=1、0.8、0.6、0.4、0.2)。通过扫描电子显微镜、X射线衍射和傅里叶红外光谱等对产物的形貌结构等进行分析,通过循环伏安法、恒流充放电法和电化学阻抗谱分析了[Cu(Phen)Cl_(2)]_(X)-OTTP电极的电化学性能。表征结果表明席夫碱聚合物被不同比例的菲咯啉铜配合物掺杂后,形貌产生变化,片状的席夫碱表面产生很多孔隙,片状结构被破坏,基本单元结构的π-π堆积相互作用受影响,为电荷储存与电子交换提供丰富电活性位点。在6 mol·L^(-1) KOH电解质的三电极系统下,[Cu(Phen)Cl2]0.4-OTTP在电流密度为0.5 A·g^(-1)时具有278 mAh·g^(-1)的高比容量。混合装置超级电容电池[Cu(Phen)Cl_(2)]_(0.4)-OTTP//AC(AC为活性炭)在能量密度为26.16 Wh·kg^(-1)时的功率密度为276.99 W·kg^(-1)。尤其是在10 A·g^(-1)的高电流密度下,混合装置经过10000次恒流充放电循环后其比容量仍保留原始的97.13%。
Preparation and electrochemical properties of Schiff base OTTP prepared from o-toluidine and p-benzaldehyde polymers doped with various proportions of phenanthroline copper complexes.The copper coordination polymer[Cu(Phen)Cl2]X-OTTP(X was the molar ratio of Schiff base to phenanthroline copper coordination complex,X=1,0.8,0.6,0.4,0.2)of Schiff base phenanthroline was synthesized by doping different proportions of phenanthroline copper complexes in Schiff base.The morphology and structure of the products were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FT-IR),and the electrochemical performance of the electrode materials[Cu(Phen)Cl_(2)]_(X)-OTTP were analyzed by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD),and electrochemical impedance spectrum(EIS).The results exhibited that the morphology of the polymer Schiff base changed after doping with phenanthroline copper complexes.After doping,the Schiff base was scaly,with more holes on the surface and the layered structure was destroyed.The matrixπ-πstacking was affected.In 6 mol·L^(-1) KOH electrolyte three-electrode system,[Cu(Phen)Cl2]0.4-OTTP had a high specific capacity of 278 mAh·g^(-1) at the current density of 0.5 A·g^(-1).The assembled supercapacitor[Cu(Phen)Cl_(2)]_(0.4)-OTTP//AC(AC=activated carbon)had a power density of 276.99 W·kg^(-1) at the energy density of 26.16 Wh·kg^(-1),and kept original specific capacity of 97.13%after 10000 GCD cycles at current density of 10 A·g^(-1).
作者
郭颖敏
赵辉
马雪冬
王伟
马宇坤
张存社
GUO Ying-Min;ZHAO Hui;MA Xue-Dong;WANG Wei;MA Yu-Kun;ZHANG Cun-She(Department of Chemical Engineering,School of Water and Environment,Chang′an University,Xi′an 710054,China;Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas,Ministry of Education,Chang′an University,Xi′an 710054,China;Key Laboratory of Petroleum Fine Chemicals of Shaanxi Province,Shaanxi Research Design Institute of Petroleum and Chemical Industry,Xi′an 710054,China)
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2023年第3期395-405,共11页
Chinese Journal of Inorganic Chemistry
基金
国家自然科学基金(No.51678059)
国土资源部退化及未利用土地整治工程重点实验室开放基金(No.SXDJ2017-1)
陕西省重点研发计划(No.2019GY-179)
陕西省土地整治重点实验室开放基金项目(No.2018-JC10)
中央高校基本科研业务费(No.300102298202)
延长石油集团科技计划项目(No.ycsy2020ky-A-1)资助。