期刊文献+

基于数据驱动的电力系统异常事件检测研究 被引量:2

Research on Abnormal Event Detection of Power System Based on Data Driven
下载PDF
导出
摘要 为提高电力系统异常事件检测的有效性,提出了一种基于数据驱动的电力异常检测模型。为减轻通信系统的数据传输负担,设计一种不等间隔压缩与重构方法。为测量任意母线之间动态特性的综合相似性,利用基于主成分分析的相似性搜索方法来处理PMU数据之间的相关性。同时,基于可达距离对某一区域电力系统中的异常事件进行有效检测。以某省电力系统PMU记录的数据为例,对所提模型进行验证。结果表明,所提模型能够有效对数据进行压缩,压缩后的PMU数据与原始PMU数据非常吻合,且数据大约压缩到原始规模的10%,可大幅度减轻通信系统的负担。与等间隔压缩法相比,所提不等间隔压缩方法重构误差明显较低,鲁棒性更优。 In order to improve the effectiveness of power system anomaly detection,a data driven power anomaly detection model is proposed.In order to reduce the data transmission burden of communication system,a method of unequal interval compression and reconstruction is designed.In order to measure the comprehensive similarity of dynamic characteristics between any buses,the similarity search method based on principal component analysis is used to deal with the correlation between PMU data.At the same time,based on the reachable distance,the abnormal events in the power system of a certain region can be effectively detected.Taking the data recorded by a provincial power system PMU as an example,the proposed model is verified.The results show that the proposed model can effectively compress the data,and the compressed PMU data is very consistent with the original PMU data,and the data is compressed to about 10%of the original size,which can greatly reduce the burden of the communication system.In addition,compared with the equal interval compression method,the proposed unequal interval compression method has lower reconstruction error and better robustness.
作者 林华城 叶泳泰 赖佛强 陈锦迅 陆建巧 LIN Huacheng;YE Yongtai;LAI Foqiang;CHEN Jinxun;LU Jianqiao(Huizhou Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Huizhou 516000,China.;不详)
出处 《武汉理工大学学报(信息与管理工程版)》 2023年第1期152-155,159,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 广东电网有限责任公司科技项目(GDKJXM20200123).
关键词 电力系统 数据驱动 异常检测 主成分分析 数据压缩 power system data driven anomaly detection principal component analysis data compression
  • 相关文献

参考文献8

二级参考文献81

  • 1林波.基于压缩感知的辐射源DOA估计[D].长沙:国防科学技术大学,2010.
  • 2DAI J S, XU W C, ZHAO D A. Real - valued DOA estimation for uniform linear array with unknown mutu- al coupling [ J ]. IEEE Trans on Signal Processing, 2012,92 ( 9 ) : 2056 - 2065.
  • 3BURG J P. Maximum entropy special analysis [ C ]// Proc of the 37th Meeting of the Society of Exploration Geophsicists.[S. 1. ]: [ s. n. ] ,1967:1213- 1213.
  • 4CAPON J. High - resolution frequency - wave number spectrum analysis [ J ]. Proc IEEE, 1969,57 ( 8 ) : 1408 - 1418.
  • 5SCHIMIDT R O. A signal subspace approach to multi- ple emitter location and spectrum estimation [ D ]. Stanford: Stanford University, 1981.
  • 6ROY R, KAILATH T. ESPRIT - estimation of signal parameters via rotational invariance techniques [ J ]. IEEE Trans on Acoustics Speech and Signal, 1986,37 (7) :984 -995.
  • 7DONOHO D L. Compressed sensing [ J ]. IEEE Trans on Information Theory, 2006,52(4): 1289 - 1306.
  • 8YANG Z, XIE L H, ZHANG C S. Off- grid direction of arrival estimation using sparse bayesian inference [J]. IEEE Trans on Signal Processing, 2013,61 (1) : 38 - 43.
  • 9MD M H, KAUSHIK M. Direction -of- arrival estima- tion using a mixed12,6 norm approximation[J]. IEEE Trans on Signal Processing, 2010,58(9):4646-4655.
  • 10FIGUEIREDO A T, ROBERT R D, WRIGHT S J. Gradient projection for sparse reconstruction: applica- tion to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Pro- cessing, 2007,1 (4) :586 - 597.

共引文献47

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部