期刊文献+

抗深度取证的多粒度融合图像修复网络 被引量:1

Multi-granularity fusion-based image inpainting network resistant to deep forensics
下载PDF
导出
摘要 数字图像的真伪判别是图像安全领域中的基础问题,因数字媒体极易被攻击篡改,针对图像的取证技术得到了广泛的研究.另一方面,对图像篡改反取证技术的研究,不仅追求更逼真的图像篡改操作,也从相反的方向促进了取证技术的发展.图像修复作为基础的图像篡改操作,一直是国内外学者的研究热点.针对被修复篡改后的图像会被深度取证网络取证的问题,提出了一种抗深度取证的多粒度融合图像修复(multi-granularity fusion-based image inpainting network resistant to deep forensics,MGFR)网络.MGFR网络包括编解码器、多粒度生成模块以及多粒度注意力模块.首先,输入的破损图像被编码器编码成深度特征,深度特征通过多粒度生成模块生成3个不同粒度中间特征;然后,采用多粒度注意力模块来计算不同粒度中间特征之间的相关性并将其融合;最后,融合特征通过解码器生成输出结果.另外,所提出的MGFR网络被重建损失、模式噪声损失、深度取证损失以及对抗损失联合监督.研究结果显示,所提出的MGFR网络在拥有较好的修复性能的同时能成功规避深度取证网络的取证. Considering that it is relatively easy to use technological tools to attack and tamper with digital media,image forensics technology has been studied extensively in the field of image security.In addition to developing more realistic image forgery opera-tions,research on image forgery anti-forensics technology also promotes forensics technol-ogy development in the opposite direction.The process of image inpainting has always been a research hotspot.This paper proposes a multi-granularity fusion-based image in-painting network resistant to deep forensics(MGFR)network.MGFR network comprises three parts:a codec,multi-granularity generation module,and a multi-granularity atten-tion module.First,the encoder encodes the input damaged image into depth features,and then the depth features are generated by the multi-granularity generation module into three intermediate features.Subsequently,we use the multi-granularity attention module to fuse the intermediate features of different granularities.As a final step,the fused features are passed through the decoder to produce the output.Additionally,the proposed MGFR is jointly supervised by reconstruction loss,pattern noise loss,deep forensic loss,and adver-sarial loss.Experimental results reveal that the proposed MGFR avoids the forensics of deep forensics networks while maintaining decent inpainting performance.
作者 窦立云 冯国瑞 钱振兴 张新鹏 DOU Liyun;FENG Guorui;QIAN Zhenxing;ZHANG Xinpeng(College of Communication and Information Engineering,Shanghai University,Shanghai 200444,China;School of Computer Science and Technology,Fudan University,Shanghai 200433,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期10-23,共14页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金面上资助项目(61572308) 国家自然科学基金联合基金资助项目(U20B2051)。
关键词 多媒体安全 反取证 图像修复 多粒度 multimedia security anti-forensics image inpainting multi-granularity
  • 相关文献

参考文献2

二级参考文献4

共引文献8

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部