期刊文献+

闵可夫斯基空间R^(1+(1+n))中的Faddeev模型

Faddeev model in Minkowski space R^(1+(1+n))
下载PDF
导出
摘要 Faddeev模型是经典场论中用结状拓扑孤子来模拟重基本粒子的重要模型,是粒子物理中经典非线性Sigma模型的推广,与著名的Skyrme模型也有密切的关系.给出了闵可夫斯基空间R^(1+(1+n))中Faddeev模型的方程推导,证明了方程具有一些重要的性质,并给出了一些精确解. The Faddeev model is used in modeling heavy elementary particles by topo-logical knotted solitons in classical field theory.It is a generalization of the well-known classical nonlinear sigma model of Gell-Mann and Levy.In addition,it is closely related to the celebrated Skyrme model.In this paper,we derive the equation of the Faddeev model in the Minkowski space R^(1+(1+n)),and show that the system enjoys many interesting properties,and provide some exact solutions in special cases.
作者 刘思杰 刘见礼 盛万成 LIU Sijie;LIU Jianli;SHENG Wancheng(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期175-184,共10页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11771274) 上海市自然科学基金资助项目(20ZR1419400)。
关键词 拟线性双曲组 Faddeev模型 精确解 quasilinear hyperbolic systems Faddeev model exact solutions
  • 相关文献

参考文献1

二级参考文献29

  • 1Faddeev, L.: Einstein and several contemporary tendencies in the theory of elementary particles. In: Rela- tivity, Quanta, and Cosmology, Volume 1 (M. Pantaleo and F. de Finis ed.), Johnson Reprint, New York, 1979, pp. 247-266.
  • 2Faddeev, L.: Some comments on the many-dimensional solitons. Lett. Math. Phys., 1, 289-293 (1976).
  • 3Faddeev, L.: Knotted solitons. In: Proc. Internat. Congress Mathematicians, Volume 1, Higher Ed. Press, Beijing, 2002, pp. 235-244.
  • 4Lin, F.-H., Yang, Y.: Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007, 319-344.
  • 5Rybakov, Y. P., Sanyuk, Y. P.: Methods for studying 3+1 localized structures: the Skyrmion as the absolute minimizer of energy. Internat. J. Mod. Phys. A, 7, 3235-3264 (1992).
  • 6Skyrme, T. H. R.: A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-559 (1962).
  • 7Ward, R. S.: Hopf solitons on S^3 and R^3. Nonlinearity, 12, 241-246 (1999).
  • 8Riviere, T.: A remark on the use of differential forms for the Skyrme problem. Lett. Math. Phys., 45, 229 238 (1998).
  • 9Manton, N. S.: Geometry of Skyrmions. Commun. Math. Phys., 111, 469-478 (1987).
  • 10Esteban, M.: A direct variational approach to Skyrme model for meson fields. Commun. Math. Phys., 105, 571-591 (1986).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部