期刊文献+

Intrusion Detection Method Based on Active Incremental Learning in Industrial Internet of Things Environment

下载PDF
导出
摘要 Intrusion detection is a hot field in the direction of network security.Classical intrusion detection systems are usually based on supervised machine learning models.These offline-trained models usually have better performance in the initial stages of system construction.However,due to the diversity and rapid development of intrusion techniques,the trained models are often difficult to detect new attacks.In addition,very little noisy data in the training process often has a considerable impact on the performance of the intrusion detection system.This paper proposes an intrusion detection system based on active incremental learning with the adaptive capability to solve these problems.IDS consists of two modules,namely the improved incremental stacking ensemble learning detection method called Multi-Stacking model and the active learning query module.The stacking model can cope well with concept drift due to the diversity and generalization selection of its base classifiers,but the accuracy does not meet the requirements.The Multi-Stacking model improves the accuracy of the model by adding a voting layer on the basis of the original stacking.The active learning query module improves the detection of known attacks through the committee algorithm,and the improved KNN algorithm can better help detect unknown attacks.We have tested the latest industrial IoT dataset with satisfactory results.
出处 《Journal on Internet of Things》 2022年第2期99-111,共13页
基金 sponsored by the National Natural Science Foundation of China under Grants 62271264,61972207,and 42175194 the Project through the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部