摘要
该文引入了渐近θ-概周期随机过程的概念,并在算子半群理论框架下研究了一类带有渐近概周期系数的无穷维随机微分方程,利用随机分析理论建立了此类随机微分方程渐近θ-概周期解的存在性.此外该文还引入了依路径分布渐近概周期过程的概念,并证明了上述渐近θ-概周期解还是依路径分布渐近概周期的.值得注意的是,在早期的研究结果中,建立的均是更弱的一维分布渐近概周期解的存在性.
In this paper,we introduce the notion of asymptotically θ-almost periodic stochastic process and study a class of stochastic differential equations in infinite dimensions with asymptotically almost periodic coeffcients under the framework of operator semigroup theory.Using stochastic analysis theory,the existence of asymptotically θ-almost periodic solutions of these equations is established.In addition,the concept of asymptotically almost periodic process in path distribution is introduced,and we prove that the above solutions are also asymptotically almost periodic in path distribution.It is noteworthy that all the earlier related results only give the existence of asymptotically almost periodic solutions in one-dimensional distribution,which are weaker than asymptotically almost periodic solutions in path distribution.
作者
陈叶君
丁惠生
Chen Yejun;Ding Huisheng(School of Mathematics and Statistics,Jiangxi Normal University,Nanchang 330022)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2023年第2期341-354,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(11861037)
江西省双千计划(jxsq2019201001)
江西省教育厅研究生创新基金(YC2021-B078)。
关键词
依路径分布渐近概周期
渐近θ-概周期
随机微分方程
Asymptotically almost periodic in path distribution
Asymptoticallyθ-almost periodic
Stochastic differential equations.