期刊文献+

冷却速度对高硅球墨铸铁组织和性能的影响 被引量:2

Effect of Cooling Rate on Microstructure and Properties of High-Silicon Ductile Iron
下载PDF
导出
摘要 采用消失模铸造工艺制得不同壁厚梯度的高硅球铁试样,用以研究不同冷却速度对其组织和性能的影响,使用光学显微镜和扫描电镜观察高硅球铁试样的微观组织,利用万能拉伸试验机和数显布氏硬度仪测量其力学性能。结果表明:随着冷却速度的增加,高硅球墨铸铁试样的基体组织为全铁素体,球状石墨尺寸逐渐减小,铁素体晶粒尺寸逐渐减小,晶粒细化;硅元素在铁素体晶界处的偏析现象越来越明显,铁素体基体的晶格常数逐渐减小,铁素体的晶格畸变程度增大。硅含量4.59%的高硅球墨铸铁试样在壁厚12 mm处,球状石墨的平均尺寸约为20.4μm,铁素体晶粒平均尺寸约为31.9μm,抗拉强度约为683 MPa,伸长率为19%;在壁厚42 mm处,球状石墨平均尺寸约为29.2μm,铁素体晶粒平均尺寸约为54.9μm,抗拉强度约为666 MPa,伸长率为15%。冷却速度的增加使高硅球墨铸铁的强度和硬度逐渐增加,力学性能得到提升。 High silicon ductile iron samples with different wall thickness gradients were prepared by EPC process to study the effects of different cooling rates on their microstructure and properties.The microstructure of the specimens was observed by optical microscopy and scanning electron microscopy,and the mechanical properties were measured by universal tensile testing machine and digital Brinell hardness tester.The results showed that with the increase of the cooling rate,the matrix microstructure of the high silicon ductile iron was full ferrite,the size of spheroidal graphite and ferrite grains were gradually reduced,and the grain size was refined;the segregation of silicon element at ferrite grain boundaries was more and more obvious,the lattice constant of ferrite matrix was gradually reduced,and the degree of ferrite lattice distortion was increased.The average size of the spheroidal graphite was about 20.4μm,the average size of the ferrite grain was about 31.9μm,the tensile strength was 683 MPa,and the elongation was 19% at the wall thickness of 12 mm of the high silicon ductile iron sample with 4.59% silicon;At the wall thickness of 42 mm,the average size of the spheroidal graphite was about 29.2μm,the average size of the ferrite grain was about 54.9μm,the tensile strength was 666 MPa,and the elongation was 15%.With the increase of the cooling rate,the strength and hardness of the high silicon ductile iron increased gradually,and the mechanical properties were improved.
作者 王灼 刘越 周占虎 官振兴 张雅静 WANG Zhuo;LIU Yue;ZHOU Zhan-hu;GUAN Zhen-xing;ZHANG Ya-jing(School of Materials Science and Engineering,Northeastern University,Shenyang 110819,Liaoning,China;Liaoning Ever Metal Forming Tech Co.,Ltd.,Gaizhou 115200,Liaoning,China)
出处 《铸造》 CAS 北大核心 2023年第3期241-249,共9页 Foundry
关键词 高硅球墨铸铁 冷却速度 微观组织 力学性能 high silicon ductile iron cooling rate microstructure mechanical properties
  • 相关文献

参考文献7

二级参考文献75

  • 1CAIQi-zhou,WEIBo-kang,TANAKAYuichi.Effect of Graphite Nodule Diameter on Water Embrittlement of Austempered Ductile Iron[J].Journal of Iron and Steel Research(International),2005,12(3):40-45. 被引量:1
  • 2彭显平,王泽忠,张光明.铸态高韧性球墨铸铁件的生产[J].铸造,2006,55(6):640-641. 被引量:4
  • 3Millis K D, Gagnebin A P, Pilling N B. Cast ferrous alloy. US, 2 485 760 [P]. 1949.
  • 4ISO 1083: 2004, Spheroidal graphite cast irons [S]. Classification.
  • 5Bjorkegren L E, Hamberg K. Silicon alloyed ductile iron with excellent ductility and machinability [C]// 2003 Keith Millis Symposium on Ductile Cast Iron, Hilton Head, SC, 2003 (10) : 70-90.
  • 6Kovacs B V, Nowicki R M, Stickels C A. Method of making high strength ferritic ductile iron parts. US, 4 475 956 [P]. 1984.
  • 7KehrerO. High-strength, high-ductility nodular iron, andtransmission housing produced therefrom. PCT, WO 03/014407 A1 [P]. 2003.
  • 8Menk W. Nodular graphite iron alloy. US, 6 939 414 B2 [P]. 2005.
  • 9Leslie W C. Iron and its dilute substitutional solid solutions [J]. Met. Trans., 1972, 3 (1): 5-26.
  • 10Babu P B, Gromer D R, Lingenfelser D J, et al. Design for fracture resistance in microalloyed steel components [C]// Conf. Proc. Fundamentals of Microalloyed Forging Steels, TMS, 1986: 389- 423.

共引文献69

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部