期刊文献+

Effect of Crystallization and Entropy Contribution Upon the Mechanical Response of Polymer Nano-fibers:A Steered Molecular Dynamics Study

原文传递
导出
摘要 The mechanical response of polyethylene nano-fibers with the same chain length but different chain numbers are studied by using steered molecular dynamics simulations.The shrinking or stretching forces acted on the chain ends are investigated according to the chain-end distance and temperature under isothermal or continuous warming-cooling conditions,respectively.An inflection point is found in the ForceDistance response when temperature is below 500 K.This inflection point is related to the balance between entropy force and inter-monomer interaction and it reflects the strong effect of crystallization on the mechanical response of the nano-fibers.The force at inflection point is also affected by the buckling effect due to increased stiffness when crystallization occurs.The two stages found in the Force-Temperature response and the difference between the shrinking and stretching forces indicate the hysteresis of crystallization and melting.The forces at different shrinking and stretching rates reveal the entropy contribution upon the mechanical response,indicated by the Ramachandran plot of dihedrals.The chain-conformation entropy is majorly contributed by dihedrals and is quantified by the information entropy of dihedrals,which has a highly similarity to the mechanical Force-Temperature response.The enlarged forces in multiple chains over a single chain are attributed to the enhanced dihedral-conformation entropy.Our study provides a new insight to the dynamically mechanical response of polymer nano-fibers according to the effect of crystallization and entropy contribution.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第3期465-474,I0011,共11页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.21873093 and 22103080)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部