期刊文献+

结合强监督学习和生成对抗网络的图像去雾

Image dehazing combining strongly-supervised learning and generative adversarial network
原文传递
导出
摘要 针对现有去雾算法的复原图像易出现颜色失真与细节丢失问题,提出了一种基于改进循环生成对抗网络(cycle-consistent generative adversarial networks,CycleGAN)的端到端图像去雾方法,并无需依赖于大气散射模型的约束。网络生成器整体采用Encoder-Decoder架构,同时为有效学习有雾图像与清晰图像间的映射关系,在训练优化目标中结合图像自身属性构建了增强的高频损失与特征损失函数,实现对不同数据域的特征鉴别并进一步保证图像纹理结构。此外为约束复原图像与真实清晰图像颜色的一致性,提出了二阶段学习策略。首先通过非配对数据集对改进CycleGAN进行弱监督训练学习,然后于第二阶段利用部分成对数据集以强监督方式训练正向生成网络,在提高去雾网络稳定性的同时,使复原效果更接近于真实清晰图像风格。实验结果表明,所提去雾方法的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)指标值相比同类CycleGAN算法分别提升了12.43%与5.53%,并且同其他方法在视觉效果与量化指标的对比结果中也验证了其性能的有效性。 Aiming at the problems that the restored images of existing dehazing algorithms are prone to color distortion and details lost,an end-to-end image dehazing method based on cycle-consistent generative adversarial networks(CycleGAN)is proposed,which does not rely on the constriction of atmospheric scattering model.The whole network generator adopts the Encoder-Decoder framework,and in order to effectively learn the mapping relationship between hazy images and clear images,the enhanced high-frequency loss and feature loss functions are constructed in the training optimization objective by combining the image attributes,which realizes the feature identification of different data domains and further ensures the texture structure of images.In addition,a two-stage learning strategy is proposed to constrict the color consistency between restored images and their corresponding clear images.Firstly,the improved CycleGAN is learned by weakly-supervised training with unpaired datasets.Then in the second stage,the forward generator network is trained in a strongly-supervised manner with some paired datasets,which improves the stability of dehazing network while making the restoration effect closer to the real clear image style.The experimental results show that the peak signal to noise ratio(PSNR)and structural similarity(SSIM)of the proposed dehazing method are improved by 12.43%and 5.53%,respectively,compared with the similar CycleGAN algorithm,and the effectiveness of the proposed method is also verified by comparing the results of visual effect and quantitative index with other methods.
作者 翟社平 刘园彪 成大宝 ZHAI Sheping;LIU Yuanbiao;CHENG Dabao(School of Computer Science and Technology,Xi′an University of Posts and Telecommunications,Xi′an,Shaanxi 710121,China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi′an,Shaanxi 710121,China)
出处 《光电子.激光》 CAS CSCD 北大核心 2023年第3期250-259,共10页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61373116) 陕西省重点研发计划项目(2022GY-038) 陕西省大学生创新创业训练计划项目(S202111664004,S202111664077) 西安邮电大学研究生创新基金(CXJJLY202051)资助项目。
关键词 图像处理 图像去雾 循环生成对抗网络(CycleGAN) 监督学习 颜色校正 image processing image dehazing cycle-consistent generative adversarial networks(CycleGAN) supervised learning color correction
  • 相关文献

参考文献5

二级参考文献100

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 7Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 8Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.
  • 9Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87.
  • 10Stark J A. Adaptive image contrast enhancement using gen- eralizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部