期刊文献+

单颗粒人造石墨负极材料的制备及储锂性能研究 被引量:3

Preparation and lithium storage properties of single particle artificial graphite anode materials
原文传递
导出
摘要 随着低碳经济的快速推进,人造石墨技术得到飞速的发展。国内外学者对人造石墨的包覆、石墨化、电化学及储锂机理进行了大量的研究,取得了丰硕的成果,但对粒度大小对电化学及储锂特性的影响研究较少。针对这一问题,从表面形貌、粒度分布、首次库伦效率和充放电比容量、循环测试几个方面,对单颗粒人造石墨的颗粒大小对储能特性的影响进行研究,所得研究成果具有一定的理论和实践价值。 With the rapid advancement of low-carbon economy, artificial graphite preparation technology has developed rapidly.In this regard, domestic and foreign scholars have done a lot of research on the coating, graphitization, electrochemistry, and lithium storage mechanism of artificial graphite, and achieved fruitful results.But there are few studies on the effect of particle size on electrochemistry and lithium storage characteristics.In response to this problem, the effect of the particle size of single-particle artificial graphite on the energy storage characteristics was studied from the aspects of surface morphology, particle size distribution, first coulombic efficiency, charge-discharge specific capacity, and cycle test.The research results obtained have certain theoretical and practical values.
作者 叶昱昕 齐博 Ye Yu-xin;Qi Bo(Guangdong Kaijin New Energy Technology Co.,Ltd.,Kaijin Research Institute,Guangdong Dongguan 523430,China)
出处 《炭素技术》 CAS 北大核心 2023年第1期65-68,共4页 Carbon Techniques
关键词 单颗粒 针状焦 人造石墨 负极材料 储锂性能 Single particle needle coke artificial graphite anode material lithium storage performance
  • 相关文献

参考文献4

二级参考文献33

  • 1Du N, Zhang H, Chen B D, et al. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube template: a highly efficient material for Li battery applications. Advanced Materials, 2007, 19(24): 4505--4509.
  • 2Zuo P J, Yin G P, Yang Z L, et al. Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Materials Chemistry and Physics, 2009, 115(2/3): 757-760.
  • 3Chan C K, Ruffo R, Hong S S, et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132-1140.
  • 4Concheso A, Santamaria R, Menendez R. Iron-carbon composites as electrode materials in lithium batteries. Carbon, 2006, 44(9): 1762-1772.
  • 5Lee S, Yoon S, Park C M, et al. Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries. Electrochimica Acta, 2008, 54(1): 364-369.
  • 6Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006, 51(11): 1636-1640.
  • 7Wang G X, Yao J, Liu H K. Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochem Solid-state Lett., 2004, 7(8): 250-253.
  • 8Ohta N, Nagaoka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries:Graphite substrates for carbon coating. Journal of Power Sources, 2009, 194(2): 985-990.
  • 9Kang H G, Park J K, Hart B S, et al. Electrochemical characteristics of needle coke refined by molten caustic leaching as an anode material for a lithium-ion battery. Journal of Power Sources, 2006, 153(1): 170--173.
  • 10Park C W, Yoon S H, Oh S M, et al. An EVS (electrochemical voltage spectroscopy) study for the comparison of graphitization behaviors of two petxoleum needle cokes. Carbon, 2000, 38(9): 1261-1269.

共引文献36

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部