摘要
精心设计的异质结光催化剂已经被证明能够有效地促进电荷转移,从而实现特定的迁移路径和长的载流子寿命,这在进一步提高性能方面具有巨大的潜力.然而,传统二元异质结光催化剂的光催化性能仍然受到其较低的载流子分离效率的影响.本文报道了一种通过原位面对面生长直接合成双Ⅱ型SnO_(2)@ZnS-ZHS(ZHS=ZnSn(OH)_(6))三元异质结的策略.基于可靠的实验和理论计算,揭示了双Ⅱ型SnO_(2)@ZnSZHS的载流子动力学提升机制.SnO_(2)的光生空穴(h+)能够分别迁移到ZHS和ZnS的价带,确保了SnO_(2)@ZnS-ZHS可以保持双氧化电位来产生足够的羟基自由基(·OH)参与NO氧化反应.这种独特的双Ⅱ型SnO_(2)@ZnS-ZHS三元结构在光照30 min后对NO去除率高达44.5%,活性分别是ZHS的23.5倍、SnO_(2)的29.7倍和ZnS的15.9倍.光催化活性提升与独特的双Ⅱ型反应机理反映了SnO_(2)@ZnS-ZHS异质结构的优势,本工作有望为三元异质结的设计提供可行的思路.
Well-designed heterojunction photocatalysts are promising high-performance materials,effective in inducing charge transfer to achieve a particular migration path and long-lasting carriers.However,the traditional binary heterojunction photocatalysts still show low-efficiency charge separation.Herein,we report a direct dual-type-ⅡSnO_(2)@ZnSZHS(ZHS=ZnSn(OH)_(6))ternary heterojunction,obtained by a facile in-situ face-to-face growth approach.Experimental results and density functional theory calculations reveal that the carrier dynamics of SnO_(2)@ZnS-ZHS,with dual-type-Ⅱmechanisms,enables the photogenerated holes(h+)of SnO_(2)to migrate to the valence bands of ZHS and ZnS.This ensures that SnO_(2)@ZnS-ZHS has twice as much oxidizing potential to produce enough hydroxyl radicals(·OH)to participate in NO oxidation reactions.With a unique dual-type-Ⅱternary structure,SnO_(2)@ZnS-ZHS shows the highest NO removal rate(44.5%)after 30 min,which is 23.5,29.7 and 15.9 times higher than the values shown by the single components ZHS,SnO_(2)and ZnS,respectively.A reaction mechanism is proposed.The improved photocatalytic activity shows the advantages of the SnO_(2)@ZnS-ZHS heterostructure as a promising candidate for ternary heterojunction design.
作者
陈邦富
欧阳平
李宇涵
段有雨
吕康乐
Sónia A.C.Carabineiro
董帆
Bangfu Chen;Ping Ouyang;Yuhan Li;Youyu Duan;Kangle Lv;Sónia A.C.Carabineiro;Fan Dong(Engineering Research Center for Waste Oil Recovery Technology and Equipment,Ministry of Education,Chongqing Key Laboratory of Catalysis and New Environmental Materials,Chongqing Technology and Business University,Chongqing 400067,China;Nanchang Institute of Technology,Nanchang 33044,China;College of Physics and Institute of Advanced Interdisciplinary Studies,Chongqing University,Chongqing 401331,China;Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission,College of Resources and Environment,SouthCentral Minzu University,Wuhan 430074,China;LAQV-REQUIMTE,Department of Chemistry,NOVA School of Science and Technology,Universidade NOVA de Lisboa,Caparica 2829-516,Portugal)
基金
financially supported by the National Natural Science Foundation of China(51808080)
China Postdoctoral Science Foundation(2022M710830)
the Venture and Innovation Support Program for Chongqing Overseas Returnees(cx2022005)
the Natural Science Foundation Project of CQ CSTC(CSTB2022NSCQ-MSX1267)
the Science and Technology Research Program of Chongqing Municipal Education Commission of China(KJQN201800826&KJZD-K202100801)
the Post-doctoral Program Funded by Chongqing,Chongqing University Innovation Research Group project(CXQT21023)
Funda??o para a Ciência e a Tecnologia/Ministério da Ciência,Tecnologia e Ensino Superior(Portuguese Foundation for Science and Technology/Ministery for Science,Technology and Higher Education)(CEECINST/00102/2018,UIDB/50006/2020 and UIDP/50006/2020 from LAQV)。