期刊文献+

非连续混合自时延多智能体系统的饱和分布式控制

Consensus of discontinuous multi-agent systems with hybrid self-delays via saturated distributed control
原文传递
导出
摘要 研究一类非连续混合自时延多智能体系统的全局指数一致性问题.首先,利用具有时变控制增益的分布式负反馈控制器实现智能体之间状态信息交互.考虑到实际系统运行环境与节省控制成本,增设外部饱和环节将控制信号幅值限制在一个合理的范围内,从而提出利用高斯误差函数以及微分中值定理来近似模拟饱和效应,以此降低控制信号的不平滑度.随后,利用Filippov微分包含理论和测度选择定理将多智能体系统的非线性动力学函数映射为Filippov集值函数,再通过广义Halanay不等式和Lyapunov稳定性定理给出该多智能体系统的指数一致性判定条件及其最大容许时延.最后,通过数值仿真验证所提出控制策略的有效性. This paper investigates the globally and exponentially consensus problem for a kind of multi-agent systems with discontinuous dynamics and hybrid self-delays. Through implementing the distributed negative feedback control strategy with time-varying control gain, the communication of state information among agents is achieved. Since it is impossible for the amplitude of the control signal to reach infinite in practical applications, the saturation strategy is utilized to limit the control effect into certain reasonable ranges. In order to reduce the non-smoothness of control signal,the Gaussian error function and the differential mean value theorem are jointly taken to simulate the saturation effect.Furthermore, the Filippov differential inclusion and the measure selection theorem are utilized to deal with discontinuous differential equations. Then the exponentially consensus criteria and the admissible delay are derived by applying the generalized Halanay inequality and the Lyapunov stability theorem. Finally, the effectiveness of the proposed control strategy is verified by numerical simulation.
作者 汤泽 王佳枫 王艳 丰建文 TANG Ze;WANG Jia-feng;WANG Yan;FENG Jian-wen(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China;College of Mathematics and Statistics,Shenzhen University,Shenzhen 518061,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第3期670-680,共11页 Control and Decision
基金 国家自然科学基金项目(61803180,61873171,61973138) 江苏省自然科学基金项目(BK20180599) 中国博士后科学基金项目(2021T140280,2020M681484) 江苏省博士后科学基金项目(2021K408C)。
关键词 非连续多智能体系统 混合自时延 非平滑分布式控制 时变控制增益 饱和策略 discontinuous multi-agent systems hybrid self-delay non-smooth distributed control time-varying control gain saturation strategy
  • 相关文献

参考文献5

二级参考文献106

  • 1廖小昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.15-30.
  • 2刘和涛.一类时滞微分系统无条件稳定的代数判定.控制理论与应用,1986,1:106-110.
  • 3张作元.滞后型方程x(t)=Ax(f)+Bx(t-r)全时滞稳定的代数判据.数学通报,1986,31(23):1768-1771.
  • 4Repin Y M. Quadratic Lyapunov functionals for systems with delay [J]. Prikladnaya Matematikal Mehanika, 1965, 24(3): 564-566.
  • 5Brierley S D, Lee E B. Solution of the equation A(z)X (z)+X(z)B(z)=C(z) and its application to the stability of generalized linear systems [J]. Int J of Control, 1984, 40(6): 1065-1075.
  • 6Lee E B, Lu W S, Wu N E. A Lyapunov theory for linear time-delay systems [J]. IEEE Trans on Automatic Control, 1986, 31(8): 259-261.
  • 7Agathoklis P, Foda S. Stability and the matrix Lyapunov equation for delay differential systems[J]. Int J of Control, 1989, 49(2):417-432.
  • 8Lefschitz. Stabilty of nonlinear control systems[M]. New York: Academic Press, 1965.
  • 9Razumikin B S. On the stability of systems with delay [J]. Prikladnava Matematikal Mekhanika, 1956, 20 (4) : 500-512.
  • 10Trinh H, Aldeen M. On robustness and stabilization of linear systems with delayed nonlinear perturbations[J]. IEEE Trans on Automatic Control, 1997, 42 (7): 1005-1007.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部