期刊文献+

考虑新技能学习机制的软件项目调度人工蜂群算法

Artificial bee colony algorithm for software project scheduling considering new skills learning mechanism
原文传递
导出
摘要 考虑新技能的学习机制,建立软件项目调度问题的数学模型.该模型融入员工对新技能的学习、新技能熟练度的增长、投入度的自适应变化以及已有技能熟练度变化等实际因素,通过寻找最佳员工任务分配方案,最小化软件项目的工期和成本.为求解该模型,提出一种引入问题启发信息的离散人工蜂群算法.将多元学习策略应用于引领蜂阶段,在保证种群多样性的同时,加强算法全局搜索能力.在跟随蜂阶段采用一种基于启发信息的变异机制,保留最优个体中契合度较高的员工信息,并根据不同个体目标值的优劣采用相异的变异方式,针对性地进行搜索,以增强算法的局部寻优能力.实验结果表明,与已有算法相比,所提算法在不同规模的软件项目调度问题中均能够搜索到更优的分配方案. Considering the learning mechanism of new skills, a mathematical model of the software project scheduling problem is established. The model integrates some practical factors such as learning of new skills, increase of the new and existing skill proficiencies, and adaptive changes of dedications. Both duration and cost of the software project are minimized by finding the best assignment of employees to tasks. To solve the model, a discrete artificial bee colony algorithm incorporating heuristic information is proposed. A multi-learning strategy is applied to the employed bees phase to enhance the global search ability of the algorithm while maintaining the population diversity. In the onlooker bees phase, a mutation mechanism based on heuristic information is adopted, where information of the employees with higher fit in the optimal individual is retained, and distinct mutation operators are employed on different individuals based on their objective values to improve the local search ability. Experimental results show that compared with the existing methods, the proposed algorithm can find a better allocation in software project scheduling problems with increasing scales.
作者 申晓宁 姚铖滨 徐继勇 宋丽妍 王玉芳 SHEN Xiao-ning;YAO Cheng-bin;XU Ji-yong;SONG Li-yan;WANG Yu-fang(School of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China;Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen 518055,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第3期790-796,共7页 Control and Decision
基金 广东省重点实验室项目(2020B121201001) 国家自然科学基金项目(61502239,62002148) 江苏省自然科学基金项目(BK20150924)。
关键词 软件项目调度 新技能学习机制 熟练度 人工蜂群算法 多元学习 启发信息 software project scheduling new skill learning mechanism proficiency artificial bee colony algorithm multi-learning heuristic information
  • 相关文献

参考文献4

二级参考文献23

  • 1雒兴刚,汪定伟,唐加福.软件开发项目中任务调度的混沌遗传算法[J].小型微型计算机系统,2006,27(10):1923-1926. 被引量:2
  • 2Braun T, Siegel H, Netal B. A comparison study of static map- ping heuristics for a class of meta-tasks on heterogeneous com- puting systems [C]//8th IEEE Heterogeneous Computing Workshop. 1999 : 15-29.
  • 3Moreno R. Job Scheduling and resource management techniques in dynamic grid environment [C]//1st European Across Grids Conference. 2003.
  • 4Housesh, Ansarin, Renh. A genetic algorithm for multi-proces- sor scheduling[J].IEEE Transactionon Parallel and Distributed Systems, 1994,5(2) : 113 120.
  • 5Kumanan S,Jose G J, Raja K. Multi-project scheduliag using an heuristic and a genetic algorithm[J]. Int J Adv Manuf Technol, 2006,31:360-366.
  • 6Chen Po-han, Sbahandashti S M. Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints[J]. Automation in Construction, 2009,18 : 434-443.
  • 7Browning T R,Yassine A A. Resource-constrained multi-project scheduling: Priority rule performance revisited [J]. Production Economics, 2010,126 : 212-228.
  • 8Antoniol G, Di P M, Hanman M. Search based techniques for optimizing software project resource allocation [C]//Kalyanmoy Deb, ed. Proc of the Genetic and Evolutionary Computation Conf. Seattle:Springer-Verlag, 2004 : 1425-1426.
  • 9Wu W, Sun S. A project scheduling and staff assignment model considering learning effect [J]. International Journal Advanced Manufacture Technology, 2006,28 : 1190-1195.
  • 10Chang C K,Jiang H-Y, Di Yu. Time-line based model for soft ware project scheduling with genetic algorithms [J]. Information and Software Technology, 2008,50 : 1142-1154.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部