期刊文献+

带有弱奇性核的多项分数阶非线性随机微分方程解的适定性

Well-Posedness of Solutions of Multi-Term Fractional Nonlinear Stochastic Differential Equations with Weakly Singular Kernel
原文传递
导出
摘要 本文主要研究一类带有多项分数阶Caputo导数的非线性随机微分方程初值问题的解的适定性.具体地,首先把多项分数阶随机微分方程等价地转化为随机Volterra积分方程;然后,给出了该随机积分方程的Euler-Maruyama(EM)格式;最后,借助于该EM格式,证明了多项分数阶随机微分方程的解的适定性. In this paper,we study the well-posedness of solutions of a class of nonlinear stochastic differential equations with multi-term fractional Caputo derivatives.Specifically,firstly,the multi-term fractional stochastic differential equation is equivalently transformed into stochastic Volterra integral equation.Then,the Euler-Maruyama(EM)scheme of the stochastic integral equation is given.Finally,by using the EM scheme,the well-posedness of the solution of the multi-term fractional stochastic differential equation is proved.
作者 黄健飞 钱思颖 张静娜 HUANG Jianfei;QIAN Siying;ZHANG Jingna(College of Mathematical Sciences,Yangzhou University,Yangzhou 225002,China)
出处 《应用数学学报》 CSCD 北大核心 2023年第2期196-210,共15页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.11701502,11871065) 江苏省自然科学基金资助项目(BK20201427)。
关键词 分数阶随机微分方程 弱奇性核 多项分数阶微积分 Euler-Maruyama格式 解的适定性 fractional stochastic differential equation weakly singular kernel multi-term fractional operators Euler-Maruyama scheme well-posedness of solutions
  • 相关文献

参考文献4

二级参考文献61

  • 1袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 2邓聚龙.灰色系统[M].北京:国防工业出版社,1985..
  • 3Loverro A. Fractional calculus: history, definitions and applications for the engineer [OL]. [ 2007-07-14 ] . http:// www. nd. edu/-msen/Teaching/UnderRes/FracCalc, pdf.
  • 4Leu J S, Papamarcou A. On estimating the spectral exponent of fractional Brownian motion [J]. IEEE Transactions on Information Theory, 1995, 41( 1 ):233-244.
  • 5Liu S C, Chang S Y. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification [J]. IEEE Transactions on Image Processing, 1997, 6(8): 1176-1184.
  • 6Podlubny I. Fractional-order systems and PI^λD^μ-controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
  • 7Engheta N. On fractional calculus and fractional multipoles in electromagnetism [J]. IEEE Transactions on Antennas Propagation 1996, 44(4) : 554-566.
  • 8Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denosing [J]. IEEE Transactions on Image Processing, 2002, 11(7): 689 -703.
  • 9Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 25(8) : 1020-1036.
  • 10Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization [J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部