摘要
为解决传递函数的辨识效率问题,通过粒子群优化算法对系统传递函数进行参数辨识,寻找参数的最优解.文章利用基于粒子群优化算法辨识传递函数、带极值扰动粒子群优化算法和惯性权重混沌粒子群优化算法,分别对不同类型的传递函数(一阶惯性、二阶惯性、一阶惯性加滞后和积分惯性加滞后)进行仿真验证.结果表明,改进后的ePSO算法和iPSO算法比bPSO算法具有更好的系统传递函数辨识效果.
In order to solve the problem of the identification efficiency of the transfer function,the param-eters of the system transfer function are identified by the particle swarm optimization algorithm to find the opti-mal solution of the parameters.In this paper,different types of transfer functions(first-order inertia,second order inertia,first-order inertia plus lag,and integral inertia plus hysteresis)are used for simulation verifica-tion by using particle swarm optimization algorithm to identify transfer function,particle swarm optimization algorithm with extreme perturbation,and inertia weight chaotic particle swarm optimization algorithm.The results show that the improved ePSO algorithm and iPSO algorithm have better system transfer function identifica-tion effect than the bPSO algorithm.
作者
周廷慰
ZHOU Ting-wei(College of Mathematics and Physics,Bengbu University,Bengbu 233000,China)
出处
《白城师范学院学报》
2023年第2期28-34,共7页
Journal of Baicheng Normal University
基金
蚌埠学院重点科研项目“粒子群算法在智能制造系统多目标车间调度中的应用研究”(2022ZR05zd)
教育部产学合作协同育人项目“新工科背景下基于线上线下混合教学模式的高等数学课程改革研究”(220605350085441)
教育部产学合作协同育人项目“新工科视域下基于OBE的高等数学课程思政探究”(220806038295152).
关键词
粒子群算法
传递函数
辨识
仿真
particle swarm optimization
transfer function
identification
simulation