期刊文献+

基于邻域覆盖约简的层次化规则学习算法

Hierarchical Rule Learning Algorithm Based on Neighborhood Covering Reduction
下载PDF
导出
摘要 在大数据环境下的分类学习中,随着描述样本语义信息的丰富,数据的类别空间结构存在着层次化。然而,现有分层分类算法缺乏可解释性,为此本文提出了一种基于邻域覆盖约简的层次化规则学习算法。该算法框架主要包括:(1)定义了面向层次化结构数据的邻域覆盖约简模型;(2)定义了层次邻域系统中覆盖元的依赖度;(3)提出了一种基于覆盖元依赖度的层次化规则学习前向搜索算法。最后,实验表明本文所提算法的分类性能较优且具有较好的可解释性。 In the classification learning under big data environment,there are hierarchical structures among categories in class space of data with rich semantic information.However,existing hierarchical classification algorithms lack interpretability.To address this problem,a hierarchical rule learning method based on neighborhood covering reduction is proposed.The framework consists of three parts:(1)a neighborhood covering reduction model for hierarchical structure data is defined;(2)a dependency degree of covering element in hierarchical neighborhood system is defined;(3)a forward hierarchical rule learning algorithm based on the dependency degree of covering element is designed.Finally,the effective and better interpretability of the proposed algorithm is verified by extensive experiments.
作者 吴镒潾 刘浩阳 毛煜 林耀进 WU Yilin;LIU Haoyang;MAO Yu;LIN Yaojin(School of Computer Science,Minnan Normal University,Zhangzhou 363000,China;Key Laboratory of Data Science and Intelligence Application,Minnan Normal University,Zhangzhou 363000,China)
出处 《安庆师范大学学报(自然科学版)》 2023年第1期58-64,共7页 Journal of Anqing Normal University(Natural Science Edition)
基金 国家自然科学基金(62076116) 福建省自然科学基金(2021J2049)。
关键词 规则学习 邻域覆盖约简 层次分类 依赖度 rule learning neighborhood covering reduction hierarchical classification dependence degree
  • 相关文献

参考文献2

二级参考文献25

  • 1刘金福,于达仁,胡清华,王伟.基于加权粗糙集的代价敏感故障诊断方法[J].中国电机工程学报,2007,27(23):93-99. 被引量:14
  • 2R Gilad-Bachrach Ranb,A Navot,N Tishby.Margin based feature selection-theory and algorithms[A].International Conference on Machine Learning[C].ACM Press,2004.43-50.
  • 3T G Dietterich.An experimental comparison of three methods for constructing ensembles of decision trees:bagging,boosting,and randomization[J].Mach Learn,2000,40:139-157.
  • 4Zhou Z-H,Yu Y.Ensembling local learners through multimodal perturbation[J].IEEE Trans.SMC-Part B:Cybernetics.2005,35:725-735.
  • 5L Breiman.Bagging predictors[J].Machine Learning.1996,24(2):123-140.
  • 6RE Schapire.The strength of weak leamability[J].Machine Learning,1990,5(2):197-227.
  • 7C Blake,C J Merz.UCI repository of machine learning databases[DB/ OL].http://www.ics.uci.edu/mlearn/MLRepository.html,Department of ICS,University of California,Irvine,1998.
  • 8Hu Q H,Yu D R,Xie Z X,Li X D.EROS:ensemble rough subspaces[J].Pattern Recognition.2007,40:3728-3739.
  • 9Hu Q H,Yu D R,Xie Z.Neighborhood classifiers[J].Expert Systems with Applications,2008,34:866-876.
  • 10Hu Q H,Yu D R,Liu J F,Wu C X.Neighborhood rough set based hetsrogeneous feature subset selection[J].Information Sciences,2008,178:3577-3594.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部