摘要
Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a cell membrane,cytoplasm,and nucleus is established to study how particle geometry and position affect the three-dimensional ARF,and its results agree well with finite-element numerical results.The microsphere can be moved relative to the beam axis by changing its structure and position in the beam,and the axial ARF increases with increasing outer-shell thickness and core size.This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.
基金
supported by the National Natural Science Foundation of China (Grant No.11874252)
the Fundamental Research Funds for the Central Universities (Grant No.2020TS029).