期刊文献+

基于图像增强和SKNet的交通标志识别 被引量:2

Traffic Sign Recognition Based on Image Enhancement and SKNet
下载PDF
导出
摘要 针对现有交通标志识别系统对图像特征提取不充分和复杂情况下难以识别的问题,设计基于图像增强和SKNet的交通标志识别模型HE-SKNet。首先,采用直方图均衡化,对过亮或过暗的交通标志图像进行增强;然后使用自适应调节感受野大小的SKNet网络进行特征提取和分类。GTSRB数据集的实验结果表明,提出的HE-SKNet模型识别准确率达到了98.95%,相比ResNet、ResNeXt、SENet和SKNet准确率平均提高了2.77个百分点,验证了HE-SKNet模型自适应提取不同尺度特征的能力,更适用于过亮或过暗的复杂实际应用场景。 Aiming at the problems that the existing traffic sign recognition systems extract image feature insufficiently and are difficult to recognize under complex situations,a traffic sign recognition model HE-SKNet is designed based on image enhancement and SKNet.Firstly,the histogram equalization is used to enhance the images of traffic signs with too bright or too dark.Then the SKNet network that adaptively adjusts the size of the receptive field is used for feature extraction and classification.The experimental results on the GTSRB dataset show that the recognition accuracy of the proposed HE-SKNet model reaches 98.95%,which enjoys 2.77 percentage points higher than that of ResNet,ResNeXt,SENet and SKNet on average.It verifies that the HE-SKNet model adaptively extracts different scales of feature and is more suitable for complex practical application scenarios with too bright or too dark.
作者 廖聪 郭凰 赵茂军 王雨松 白俊峰 LIAO Cong;GUO Huang;ZHAO Mao-jun;WANG Yu-song;BAI Jun-feng(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《计算机与现代化》 2023年第3期23-28,共6页 Computer and Modernization
基金 国家重点研发计划项目(2018YFC0808706) 国家自然科学基金资助项目(62001059) 陕西省重点研发计划项目(2021GY-019) 陕西省自然科学基金面上项目(2022JM-056)。
关键词 图像增强 直方图均衡化 SKNet 深度学习 交通标志识别 image enhancement histogram equalization SKNet deep learning traffic sign recognition
  • 相关文献

参考文献14

二级参考文献97

  • 1朱双东,刘兰兰,陆晓峰.一种用于道路交通标志识别的颜色—几何模型[J].仪器仪表学报,2007,28(5):956-960. 被引量:23
  • 2Khellaf A, Beghdadi A, Dupoiset H. Entropic contrast enhance- ment[ J]. IEEE Transactions on Medical Imaging, 1991,10(4) : 589 - 592.
  • 3Kim Y L. Contrast enhancement using brightness preserving bi- histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 1997,43( 1 ) : 1 - 8.
  • 4CaseUes V, Lisani J L, Morel J M, Sapiro G. Shape preserving local histogram modification [ J ]. IEEE Transactions on Image Processing, 1999,8 (2) : 220 - 230.
  • 5Wang C, Ye Z. Brightness preserving histogram equalization with maximum entropy: A variational perspective [ J ]. IEEE Transactions Consumer Electronics, 2005,51 (4) : 1326 - 1334.
  • 6Sheet D, Garud H, Suyeer A, et al. Brightness preserving dy- namic fuzzy histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 2010,56(4) : 2475 - 2480.
  • 7Arici T, Dikbas S, Altunbasak Y. A histogram modification framework and its application for image contrast enhancement [ J ]. IEEE Transactions on Image Processing, 2009, 18 (9) : 1921 - 1935.
  • 8Lee C, Lee C, Lee Y Y, et al. Power-constrained conlrast en- hancement for emissive displays based on histogram equaliza- tion[J]. IEEE Transactions on Image Processing, 2012,21 (1): 80 - 93.
  • 9Bassiou N, Kotropoulos C. Color image histogram equalization by absolute discounting back-off[ J]. Computer Vision and Im- age Understanding, 2007,107(1-2) : 108 - 122.
  • 10Han J H, Yang S J, Lee B U. A novel 3-D color histogram e- qualization method with uniform 1-D gray scale histogram[J]. IEEE Transactions on Image Processing, 2011,20 ( 2 ) : 506 - 512.

共引文献360

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部