摘要
Transition metal carbides are promising candidates for thermal protection materials due to their high melting points and excellent mechanical properties.However,the relatively high thermal conductivity is still a major obstacle to its application in an ultra-high-temperature insulation system.In this work,the low thermal conductivity of dense(TiZrHfVNbTa)Cx(x=0.6-1)high-entropy carbides has been realized by adjusting the carbon stoichiometry.The thermal conductivity gradually decreases from 10.6 W·m^(−1)·K^(−1) at room temperature to 6.4 W·m^(−1)·K^(−1) with carbon vacancies increasing.Due to enhanced scattering of phonons and electrons by the carbon vacancies,nearly full-dense(97.9%)(TiZrHfVNbTa)C_(0.6) possesses low thermal conductivity of 6.4 W·m^(−1)·K^(−1),thermal diffusivity of 2.3 mm^(2)·s^(−1),as well as electrical resistivity of 165.5μΩ·cm.The thermal conductivity of(TiZrHfVNbTa)C_(0.6) is lower than that of other quaternary and quinary high-entropy carbide ceramics,even if taking the difference of porosity into account in some cases,which is mainly attributed to compositional complexity and carbon vacancies.This provides a promising route to reduce the thermal conductivity of high-entropy carbides by increasing the number of metallic elements and carbon vacancies.
基金
supported by the National Natural Science Foundation of China (Nos.52032002 and 51972081)
National Safety Academic Foundation (No.U2130103)
Science and Technology on Particle Transport and Separation Laboratory,and Heilongjiang Touyan Team Program.