期刊文献+

基于强化学习的城镇燃气事故信息抽取方法 被引量:6

Information extraction method of urban gas accidents based on reinforcement learning
下载PDF
导出
摘要 为解决因城镇燃气事故调查报告标注样本缺乏,从而影响命名实体识别性能这一问题,提出基于BiLSTM-CRF+强化学习的燃气事故领域命名实体识别方法。首先在数据预处理阶段,采用基于文本结构的主旨段落抽取方法,识别事故调查报告的关键段落;其次在模型训练阶段,采用BiLSTM-CRF+强化学习模型,实现城镇燃气事故命名实体识别模型训练;最后利用城镇燃气事故调查报告作为试验数据进行验证。研究结果表明:经由强化学习模型降噪后,实体识别模型的综合评价指标提高5.76%,主旨段落识别方法相比Word2vec特征表示方法,使模型的综合评价指标提升7.17%。 In order to solve the problem that the lack of marked samples of the urban gas accident investigation reports affect the performance of named entity recognition,a named entity recognition method of gas accident field based on bidirectional long short term memory/conditional random fields(BiLSTM-CRF)and reinforcement learning was proposed.Firstly,in the data pre-processing stage,the theme paragraph extraction method based on the text structure was adopted to identify the key paragraphs of accident investigation reports.Secondly,in the model training stage,the BiLSTM-CRFand reinforcement learning model were used to train the named entityrecognition model of urban gas accidents.Finally,the urban gas accident investigation reports were taken as the test data for experimental validation.The results showed that the comprehensive evaluation index of the entity recognition model improved by 5.76%after the noise reduction by the reinforcement learning model,and the themeparagraph recognition method could improve the comprehensive evaluation index of the model by 7.17%compared with the Word2vec feature representation method.
作者 王明达 张榜 吴志生 李云飞 WANG Mingda;ZHANG Bang;WU Zhisheng;LI Yunfei(College of Mechanical and Electrical Engineering,China University of Petroleum(East China),Qingdao Shandong 266580,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第3期39-45,共7页 Journal of Safety Science and Technology
关键词 城镇燃气事故 命名实体识别 信息抽取 强化学习 urban gas accident named entity recognition information extraction reinforcement learning
  • 相关文献

参考文献7

二级参考文献52

  • 1周昭涛,卜东波,程学旗.文本的图表示初探[J].中文信息学报,2005,19(2):36-43. 被引量:17
  • 2周俊生,戴新宇,尹存燕,陈家骏.自然语言信息抽取中的机器学习方法研究[J].计算机科学,2005,32(3):186-189. 被引量:8
  • 3[1]ELNOUBI M S.Analysis of GMSK with discriminator de-tection in mobile radio channels[J].IEEE Trans Veh Technol,1996,35:71-76.
  • 4[2]RAMóN Sánchez-Pérez,SUBBARAYAN Pasupathy.En-velope-aided viterbi receivers for GMSK signals with lim-iter-discriminator detection[J].IEEE Trans.On Com-munications,2004,52(10):1733-1746.
  • 5[3]YONGACOGLU A,MAKRAKIS D,FEHER K.Differen-tial detection of GMSK using decision feedback[J].IEEE Trans Commun,1988,36(6):641-649.
  • 6[4]ABRARDO A,BENELLI G,CAU G R.Multiple-symbol differential detection of GMSK for mobile communications[J].IEEE Trans Veh Technol,1995,44(3):379-389.
  • 7[5]BULJORE S,DIOURIS J F.Theoretical study of a multi-sensor equalizer using the MSE for the radio mobile chan-nel (GSM channel)[C]//Proc.of the 28th Asilomar Conf Signals,Systems and Computers,1994,[s.l.]:[s.n.],1994:94-98.
  • 8[6]SVENSSON A.Reduced state sequence detection of par-tial response continuous phase modulation[J].Proc Inst Elect Eng.1991,138(4):256-268.
  • 9[7]NAOFAL AI-Dhahir,SAULNIER G.A high-performance reduced-complexity GMSK demodulator[J].IEEE Trans Commun,1998,46(11):1409-1412.
  • 10[9]XIONG Fu-qin.Digital modulation techniques[M].[s.1.]:Artech House telecommunications library,2000:311-317.

共引文献73

同被引文献51

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部