期刊文献+

基于BP神经网络的污水格栅间气体监测 被引量:2

Monitoring of gas in sewage grille room based on BP neural network
下载PDF
导出
摘要 为实现对城市污水泵站格栅间内H_(2)S和CO有害气体浓度实时准确监测分析,设计气体传感器阵列监测系统,建立单隐层BP神经网络模型对气体浓度样本进行训练,确定网络隐含层数为9,训练函数为traindm,模型优化后输出的H_(2)S和CO气体浓度与实测值的平均相对误差分别为1.3%与0.4%。研究结果表明:采用BP神经网络模型对传感器阵列采集到的样本数据进行训练,可提高其测量精度,提升精度范围在57%~75%之间,能够满足对污水泵站有害气体监测的基本要求,所建立模型表现出良好效果。研究结果可为污水格栅间有害气体监测提供新方法。 To realize the real-time and accurate monitoring and analysis on the concentrations of H_(2)S and CO harmful gases in the grille room of urban sewage pump station,a gas sensor array monitoring system was designed.A single hidden layer BP neural network model was established to train the gas concentration sample.It was determined that the number of hidden layers of the network was 9 and the training function was traindm.The average relative errors of the concentrations of H_(2)S and CO between the optimized model output and the measured values were 1.3%and 0.4%,respectively.The results showed that adopting the BP neural network model to train the sample data collected by the sensor array could improve its measurement accuracy,and the improve accuracy range was 57%~75%,which could meet the basic requirements of harmful gases monitoring of sewage pump station,the established model presented good effect.The results can provide a new method for monitoring the harmful gases in the sewage grille room.
作者 娄和壮 贾廷贵 路士成 李筱翠 强倩 LOU Hezhuang;JIA Tinggui;LU Shicheng;LI Xiaocui;QIANG Qian(No.4 Sewer Maintenance Branch Company of Beijing Drainage group,Beijing 100044,China;Institute of Mining and Coal,Inner Mongolia University of Science and Technology,Baotou Inner Mongolia 014010,China;The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry,Beijing 100089,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第3期171-176,共6页 Journal of Safety Science and Technology
基金 辽宁省教育厅基金项目(LJ2017FAL002)。
关键词 格栅间 BP神经网络 H_(2)S与CO气体 传感器阵列 交叉干扰 grille room BP neural network H_(2)S and CO gases sensor array cross interference
  • 相关文献

参考文献6

二级参考文献42

  • 1太惠玲,谢光忠,蒋亚东.基于气体传感器阵列的混合气体定量分析[J].仪器仪表学报,2006,27(7):666-670. 被引量:25
  • 2李双会.防爆电气设备隔爆外壳最大试验安全间隙及其影响因素[J].中国安全生产科学技术,2007,3(2):62-65. 被引量:15
  • 3郭天祥.新概念51单片机C语言教程[M].北京:电子工业出版社,2009.
  • 4迟荣强.单片机原理及接口技术[M].北京:高等教育出版,2009:24-63.
  • 5Jo Young-Do, Ahn Bum Jong. Analysis of hazard areas asso-ciated with high-pressure natural-gas pipelines . JournalofLoss Prevention in the Process Industries, 2002, 15:179-188.
  • 6H. Wilkening, D. Baraldi. CFD modelling of accidental hy- drogen release from pipelines [ M ]. International Journal of Hydrogen Energy, 2007, 32:2206-2215 .
  • 7Pereira J C F, Ch en X Q. Numerical calcul at ions ofun- steady heavy gas dispersion [ M ]. Journal of Hazardous Ma-terials, 1996, 46 (5) :253-272 .
  • 8Faisal. I. Khan, S. A. Abbasi. Modeling and control of the dispersion of hazardous heavy gases [ J ]. Journal of Loss Prevention in the Process Industries, 1999, (12) : 235 -244.
  • 9HOU Changiun, LI Jiangjie, HUO Danqun, et al. A port- able embedded toxic gas detection device based on a cross- responsive sensor array[J]. Sensors and Actuators B, 2012 (161) :244-250.
  • 10ZHANG Bo, XI Wanpeng, WEI Wenwen, et al. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit [J]. Postharvest Biology and Technology, 2011,60 : 7-16.

共引文献42

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部