摘要
受背景中复杂纹理的影响,有花纹和图案的织物检测疵点一直是该领域的难题。对此提出了一种改进YOLOv5模型的疵点检测方法,该方法将模型中原来的特征金字塔网络模块替换为双向特征金字塔网络,以更好地融合不同尺度下提取的特征。实验中使用该模型对具有花纹和图案的织物样本进行检测,结果表明改进后的模型有较为明显的性能提升。
The defect detection in fabrics with patterns has been a challenge in this field due to the complex textures in the background.In this regard,a defect detection method for improving the YOLOv5 model is proposed.This method replaces the origi⁃nal Feature Pyramid Network in the YOLOv5 model with Bidirectional Feature Pyramid Network to better fuse features extracted at different scales.In the experiment,the model is used to detect the fabric samples with patterns,and the results show that the im⁃proved model has a more obvious performance improvement.
作者
罗俊丽
路凯
张洋
杜超超
陈仁凯
肖玉麟
Luo Junli;Lu Kai;Zhang Yang;Du Chaochao;Chen Renkai;Xiao Yulin(College of Information Engineering,Xuchang University,Xuchang 461000;Henan International United Laboratory of Polarized Sensing and Intelligent Signal Processing,Xuchang 461000)
出处
《现代计算机》
2023年第3期50-54,共5页
Modern Computer
基金
国家自然科学基金(62101478)
河南省重点研发与推广专项(科技攻关)项目(212102210402,202102310236)
河南省高等学校重点科研项目(23B520016)
河南省高校大学生创新创业训练计划项目(202210480037)。