期刊文献+

基于深度学习的X射线胶片数字化与缺陷检测算法 被引量:2

Algorithm of X-Ray Film Digitization and Defect Detection Based on Depth Learning
下载PDF
导出
摘要 X射线胶片数字化和焊缝缺陷自动检测对提高航天大型零件生产加工质量和检测效率具有重要意义。在某些特定场景中,X射线检测无法采用数字式接收器,将X射线胶片转化为数字图像是缺陷识别的前提,但现有方法难以实现X射线胶片的高保真数字化,此外,大型零件的焊缝缺陷具有小目标特点,人工判读和传统图像检测算法难以保证识别精度。本文提出了一种基于深度学习的X射线胶片缺陷检测算法,首先基于全卷积神经网络在X射线胶片上不同曝光时间的图像中自动选择曝光时间最佳的数字图像,然后设计了基于轻量级MoGaA网络的缺陷检测网络,实现了数字化图像中的小目标缺陷检测。数字化和检测结果表明,该算法对于焊缝缺陷检测的准确率可达96%,取得了良好的检测效果。 The digitization of X-ray film and automatic detection of weld defects are of great significance for improving the production and processing quality and detection efficiency of large aerospace parts.In some specific scenes,the digital receiver cannot be used for X-ray detection,and the transformation of X-rayfilm into digital image is the premise of defect recognition.However,it is difficult to realize the highfidelity digitization of X-rayfilm by existing methods.In this paper,an algorithm of X-rayfilm defect detection based on depth learning is proposed.Firstly,based on full convolution neural network,the digital image with best exposure time on the X-rayfilm is automatically selected from the images with diffierent exposure time.Then a defect detection network based on lightweight MoGaA network is designed to detect small target defects in X-ray digital images.The digitization and detection results show that the accuracy of this algorithm for weld defect detection can reach 96%,and good detection effect is obtained.
作者 缪寅宵 孙增玉 杨奕 郭力振 MIAO Yinxiao;SUN Zengyu;YANG Yi;GUO Lizhen(Beijing Aerospace Institute for Metrology and Measurement Technology,Beijing 100076,China)
出处 《航空制造技术》 CSCD 北大核心 2023年第7期50-56,72,共8页 Aeronautical Manufacturing Technology
关键词 X射线胶片 焊缝缺陷 数字化图像 深度学习 缺陷检测 X-rayfilm Weld defects Digital image Deep learning Defect detection
  • 相关文献

参考文献7

二级参考文献51

  • 1李乐,陈忠,张宪民.复杂背景下X射线BGA焊点气泡检测[J].焊接学报,2015,36(3):80-84. 被引量:13
  • 2王清,李中华,孙东立,武高辉.TC4钛合金的热变形行为及其影响因素[J].材料热处理学报,2005,26(4):56-59. 被引量:36
  • 3宿丁,张启衡,陶冰洁,谢盛华.复杂背景下多源多目标图像的分形分割算法[J].红外与激光工程,2007,36(3):387-390. 被引量:16
  • 4SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [ J ]. Journal of Electronic Imaging, 2004, 13( 1 ): 145-165.
  • 5BARDERA A, BOADA I, FEIXAS M, et al. Image seg- mentation using excess entropy [ J ]. Journal of Signal Processing Systems, 2009, 54( 1-3): 205-214.
  • 6LI C H, LEE C K. Minimum cross entropy thresholding [J]. Pattern Recognition, 1993, 26(4): 617-625.
  • 7BRINK A D, PENDOCK N E. Minimum cross-entropy threshold selection[ J]. Pattern Recognition, 1996, 29 ( 1 ) : 179-189.
  • 8PAL N R. On minimum cross-entropy thresholding[ J]. Pattern Recognition, 1996, 29(4): 575-580.
  • 9LI C H, TAM P K S. An iterative algorithm for minimum cross entropy thresholding [ J ]. Pattern Recognition Let- ters, 1998, 19(8): 771-776.
  • 10CONSTANTINO T. Generalized entropy-based criterion for consistent testing[ J]. Physical Review E, 1998, 58 : 1442-1445.

共引文献93

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部