摘要
针对目前旅游领域实体对齐任务中的长尾实体过多和现有知识以及标注数据稀缺的问题,提出一种基于多视图知识表示和神经网络相结合的实体对齐方法。采用预训练模型完成多视图的知识表示学习,获得了实体的结构嵌入、关系嵌入和描述信息嵌入,然后利用卷积神经网络对结合了三种视图嵌入的实体综合嵌入进行相似度计算。实验精准率达到91.4%、召回率达到87.9%、综合指标F1值达到89.6%。结果表明,该方法有效地完成了旅游领域的实体对齐任务。
Aiming at the problems of too many long-tail entities and existing knowledge and the scarcity of labeled data in the current entity alignment tasks in the tourism domain,this paper proposed an entity alignment method based on the combination of multi-view knowledge representation and neural network.It used a pre-trained model to complete the knowledge representation learning of multiple views,obtained the structural embedding,relationship embedding and description information embedding of the entity,and then used the convolutional neural network to calculate the similarity of the comprehensive embedding of the entities combined with the three views.The experimental accuracy rate reached 91.4%,the recall rate reached 87.9%,and the comprehensive index F 1 value reached 89.6%.The results show that the method effectively completes the entity alignment task in the tourism domain.
作者
刘璐
飞龙
高光来
Liu Lu;Bao Feilong;Gao Guanglai(College of Computer Science,Inner Mongolia University,Hohhot 010021,China;National&Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian,Inner Mongolia University,Hohhot 010021,China;Inner Mongolia Key Laboratory of Mongolian Information Processing Technology,Inner Mongolia University,Hohhot 010021,China)
出处
《计算机应用研究》
CSCD
北大核心
2023年第4期1044-1051,共8页
Application Research of Computers
基金
国家重点研发计划资助项目(2018YFE0122900)
国家自然科学基金资助项目(62066033)
内蒙古自治区成果转化资助项目(2019CG028)
内蒙古自治区应用技术研究与开发资助项目(2019GG372,2020GG0046,2021GG0158,2020PT0002)
内蒙古大学青年科技英才培育项目(21221505)。
关键词
实体对齐
预训练模型
多视图知识表示
神经网络
entity alignment
pre-training model
multi-view knowledge representation
neural network