摘要
针对六参数实用黏弹性阻尼耗能结构,基于Davenport风速谱系列响应问题进行了系统的研究.首先,利用六参数黏弹性阻尼器的微分型本构关系,建立了耗能结构基于Davenport风速谱激励下的运动方程;然后,运用复模态法将耗能结构的运动方程由二阶微分方程转化为一阶方程,获得了耗能结构系统对风振激励响应的频域解和功率谱密度函数表达式;最后,利用数学恒等式,基于随机振动理论获得了耗能结构系统在Davenport风速谱激励下的响应和阻尼器受力的解析解.该文方法不仅考虑了结构系统在风振激励作用下全振型展开的结果,表达式较现有结果更为简便,效率及精度更高,且适用于非经典阻尼结构.
Based on the Davenport wind speed spectrum,the responses of 6-parameter practical viscoelastic damping energy dissipation structures were studied systematically.Firstly,the differential constitutive relation of the 6-parameter viscoelastic damper was used to establish the motion equation of the energy dissipation structure under the Davenport wind spectrum excitation.Then,the motion equation was transformed from the 2nd-order differential equation to the 1st-order one by means of the complex mode method,and the frequency-domain solution and the power spectral density function expression of the energy dissipation structure system under wind excitation were obtained.Finally,based on the random vibration theory,the analytical solutions of the response of the energy dissipation structure system under the Davenport wind spectrum excitation and the force response of the damper,were obtained with the mathematical identity.This method not only contains the results of the all-vibration-mode expansion of the structure system under wind excitation,but also has more simple and efficient expressions than existing methods,and applies to nonclassical structures.
作者
李创第
李宇翔
杨雪峰
葛新广
LI Chuangdi;LI Yuxiang;YANG Xuefeng;GE Xinguang(School of Civil and Architectural Engineering,Guangxi University of Science and Technology,Liuzhou,Guangxi 545006,P.R.China;College of Civil and Architectural Engineering,Liuzhou Institute of Technology,Liuzhou,Guangxi 545616,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2023年第3期248-259,共12页
Applied Mathematics and Mechanics
基金
广西重点研发计划(桂科AB19259011)。
关键词
六参数实用黏弹性阻尼耗能结构
复模态法
Davenport风速谱
方差
阻尼器受力
6-parameter practical viscoelastic damping energy dissipation structure
complex mode method
Davenport wind speed spectrum
variance
damper force