期刊文献+

Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries

原文传递
导出
摘要 Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries(LIBs),while suffer from immense volumetric change and brittle solidstate electrolyte interface that causes collapse of electrodes.Here,a stress-dissipated conductive polymer binder(polyaniline with citric acid,PC)is developed to enhance the mechanical electrochemical performance between Si nanoparticles(SiNPs)and binders.Benefiting from the stable triangle network node of citric acid and a considerable distributed of hydroxyl groups,the PC binder can effectively dissipate the stress from SiNPs,thus providing an excellent cyclic stability of Si anodes.Both experimental results and theoretical calculation demonstrate the enhanced adhesion between binders and SiNPs could bond the particles tightly to form a robust electrode.The as-fabricated Si anode exhibits outstanding structural stability upon long-term cycles that exhibit a highly reversible capability of 1021 mA·h·g^(-1)over 500 cycles at a current density of 0.5 C(1 C¼4200mA·g^(-1)).Evidently,this stressdissipated binder design will provide a promising route to achieve long-life Si-based LIBs.
出处 《Journal of Materiomics》 SCIE CSCD 2023年第2期378-386,共9页 无机材料学学报(英文)
基金 supported by the National Natural Science Foundation of China(No.51977185,51972277) Southwest Jiaotong University Science and Technology Rising Star Program(No.2682021CG021).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部