期刊文献+

The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-shaped Domains

原文传递
导出
摘要 In this paper,we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems.We assume that the boundary of the star-shaped domain can be described by an explicit C 1 parametric curve in the polar coordinate.We introduce the curvilinear coordinate,in which the irregular star-shaped domain is converted to a regular semi-infinite strip.The equations of linear elasticity are discretized with respect to the angular variable and we solve the resulting semidiscrete approximation analytically using a direct method.The eigenvalues of the semi-discrete approximation converge quickly to the true eigenvalues of the elliptic operator,which helps capture the singularities naturally.Moreover,an optimal error estimate of our method is given.For the inverse elasticity problems,we determine the Lam´e coefficients from measurement data by minimizing a regularized energy functional.We apply the direct method of lines as the forward solver in order to cope with the irregularity of the domain and possible singularities in the forward solutions.Several numerical examples are presented to show the effectiveness and accuracy of our method for both forward and inverse elasticity problems of composite materials.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第1期242-276,共35页 高等学校计算数学学报(英文版)
基金 This work was partially supported by the NSFC Projects No.12025104,11871298,81930119.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部