摘要
针对传统煤泥浮选控制方法计算速度慢、检测精度低等缺陷,提出一种基于BTM二叉树模型的支持向量机回归(SVRM)优化策略,从而对煤泥浮选过程所需的药剂添加量进行预测,然后根据预测结果,通过PLC实现药剂添加量的智能控制。仿真结果表明,与基础SVRM算法相比,基于BTM的SVMR优化算法随着叶节点的不断增加,计算速度得到了显著提升;同时预测结果与所需的实际添加结果贴近,实现了在复杂的工业浮选过程中煤泥浮选的精确控制。
Aiming at the defects of the traditional slime flotation control method, such as slow calculation speed and low detection accuracy, a Support vector machine regression(SVRM) optimization strategy based on BTM binary tree model was proposed to construct the reagent addition model required in the flotation process. Aiming at the instability and complexity of industrial flotation process, an adaptive control strategy is proposed to enhance the stability of the intelligent control system of flotation process. The simulation results show that, compared with the basic SVRM algorithm, the calculation speed of the BTM-SVMR optimization algorithm is significantly improved with the increasing of leaf nodes. The fuzzy adaptive control strategy also strengthens the stability of the intelligent flotation control system and realizes the intelligent control of slime flotation system in the complex industrial flotation process.
作者
陶伟忠
赵月川
王成龙
TAO Weizhong;ZHAO Yuechuan;WANG Chenglong(China Coal Technology Group Information Technology Co.,LTD.,Xi’an 710054,China)
出处
《自动化与仪器仪表》
2023年第2期142-145,共4页
Automation & Instrumentation
基金
《哈拉沟选煤厂智能化建设研究与示范工程》(HT【2021】78号)。
关键词
煤泥浮选
支持向量机回归
二叉树模型
优化智能控制
slime flotation
Support vector machine regression
Binary tree model
Optimized intelligent control