期刊文献+

基于多传感器的实验室设备能耗研究

Research on energy consumption management of laboratory equipment based on multi-sensor
下载PDF
导出
摘要 实验室设备已成为高校提高教学质量、产出科研成果不可或缺的资源,但其在能耗方面也是巨大的。据统计,高校实验室仪器设备的能耗占高校总能耗的20%。文章基于多传感器技术精准管理的特点开发一个实验室能耗管理系统。系统采用M2M协议作为简易实验室仪器设备能耗管理机制的基础,并利用物联网技术将多种传感器应用到能耗管理系统中。为验证能耗监测机制的可行性,文章进行了系统的模拟仿真,成功地从多传感器中读取了各类实验室仪器能耗信息,按照阈值设定进行精确的能耗管理。据测算,在使用本系统之后的实验室能耗平均下降30%。 Laboratory equipment has become an indispensable resource for colleges and universities to improve teaching quality and output scientific research achievements,but its energy consumption is also huge.According to statistics,the energy consumption of laboratory equipment in colleges and universities accounts for 20%of the total energy consumption of colleges and universities.Based on the characteristics of precise management of multi-sensor technology,this paper develops a laboratory energy consumption management system.The system uses M2M protocol as the basis of energy consumption management mechanism of simple laboratory instruments and equipment,and uses Internet of things technology to apply a variety of sensors to energy consumption management system.In order to verify the feasibility of the energy consumption monitoring mechanism,we have carried out systematic simulation,successfully read the energy consumption information of various laboratory instruments from multiple sensors,and accurately manage the energy consumption according to the threshold setting.It is estimated that the laboratory energy consumption will decrease by an average of 30%after using this system.
作者 王磊 Wang Lei(Taiyuan University,Taiyuan 030012,China)
机构地区 太原学院
出处 《无线互联科技》 2023年第3期123-125,共3页 Wireless Internet Technology
基金 山西省高等学校教学改革创新项目,项目名称:面向应用型本科院校的SPOC混合教学模式研究与实践——以《RFID技术与应用》为例,项目编号:J20221191。
关键词 能耗管理 多传感器 物联网 实验室仪器设备 energy consumption management multi-sensor,Internet of things laboratory instruments and equipment
  • 相关文献

参考文献12

二级参考文献91

  • 1麦粤帮.焓差室工况设备合理性匹配的研究[J].建筑监督检测与造价,2012,5(3):24-28. 被引量:2
  • 2陈梅,张永坚,牛祺飞.公共建筑能耗监测系统研究[J].电子测量与仪器学报,2009,23(S1):167-170. 被引量:16
  • 3孙研.通信机房节能综合解决方案[J].电信工程技术与标准化,2006,19(6):2-7. 被引量:18
  • 4Krikorian R. Twitter by the numbers. 2010. http://www.slideshare.net/raffikrikorian/twitter-by-the-numbers.
  • 5Tam D. Facebook processes more than 500 TB of data daily. 2012. http://www.cnet.com/news/facebook-processes-more-than- 500-tb-o f-data-daily/.
  • 6Wikipedia, Petabyte. 2014. http://en.wikipedia.org/wiki/Petabyte.
  • 7Wikibon, a comprehensive list of big data statistics. 2012. http://wikibon.org/blog/big-data-statistics/.
  • 8李洁.微软研究院展示大数据与机器学习的魅力.2013.http://datacenter.ctocio.tom.en/132/12765132.shtml.
  • 9Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. Graphlab: A new framework for parallel machine learning. arXiv preprint arXiv: 1006.4990.2010.
  • 10The apache software foundation, what is apache mahout. 2014. http://mahout.apache.org/.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部