期刊文献+

LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟 被引量:1

Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids
下载PDF
导出
摘要 采用分子动力学方法研究了Al_(2)O_(3)纳米颗粒对二元氯化物熔盐LiCl-KCl结构和热物理性能的影响,分析了熔盐纳米流体(Nanofluids,NF)的径向分布函数、配位数N(r)、自扩散系数D、密度、黏度和热导率随纳米颗粒掺杂量和温度的变化规律。结果表明,在700~1400 K温度范围内,随着纳米颗粒掺杂量的增加,径向分布函数g_(Li-Cl)(r)的第一峰位置逐渐向左移动,且峰高增加,配位数逐渐增大,自扩散系数逐渐减小。熔盐纳米流体的密度、黏度和热导率随温度的升高而降低,随纳米颗粒掺杂量的增加而增加,黏度和热导率最大分别提高了16.83%和4.95%。热物性的变化归因于Al_(2)O_(3)纳米颗粒的加入减小了纳米流体中阴阳离子间的距离,增强了缔合作用,使得熔体结构更加致密。 Herein,the molecular dynamics method investigates the effects of Al_(2)O_(3)nanoparticles on the structure and thermophysical properties of binary chloride salt LiCl-KCl.Furthermore,the effect of doping amount and temperature on radial distribution function,coordination number[N(r)],self-diffusion coefficient(D),density,viscosity,and thermal conductivity of nanofluids were analyzed.The results show that in the temperature range of 700~1400 K,with increasing nanoparticles,the first peak position of the radial distribution function g_(Li-Cl)(r)moves to the left gradually,the peak height and the coordination number increase,and the self-diffusion coefficient decreases gradually.The density,viscosity,and thermal conductivity of nanofluids decreased with increasing temperature but increased with increasing nanoparticles,and the maximum viscosity and thermal conductivity increased by 16.83%and 4.95%,respectively.The change in thermophysical properties was attributed to adding Al_(2)O_(3)nanoparticles that reduced the distance between anions in the nanofluids,enhancing the association effect,and making the melt structure more compact.
作者 田禾青 寇朝阳 周俊杰 余银生 TIAN Heqing;KOU Zhaoyang;ZHOU Junjie;YU Yinsheng(School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2023年第3期654-660,共7页 Energy Storage Science and Technology
基金 国家自然科学基金项目(51906228),河南省博士后基金(202103007)。
关键词 熔盐 Al_(2)O_(3) 微观结构 热物性 分子动力学 molten salt Al_(2)O_(3) microstructure thermophysical property molecular dynamics
  • 相关文献

参考文献3

二级参考文献32

  • 1Fukasawa,K.; Uehara,A.; Nagai,T.; Sato,N.; Fujii,T.; Yamana,H.J.Nucl.Mater.2012,424(1-3),17.doi: 10.1016/j.jnucmat.2012.01.009.
  • 2Salanne,M.; Simon,C.; Turq,P.; Madden,P.A.J.Phys.Chem.B 2008,112(4),1177.doi: 10.1021/jp075299n.
  • 3Ghosh,S.; Reddy,B.P.; Nagarajan,K.; Kumar,K.C.H.Calphad 2014,45,11.doi: 10.1016/j.calphad.2013.11.001.
  • 4Roy,J.J.; Grantham,L.F.; Grimmett,D.L.; Fusselman,S.P.; Krueger,C.L.; Storvick,T.S.; Inoue,T.; Sakamura,Y.; Takahashi,N.J.Electrochem.Soc.1996,143(8),2487.doi: 10.1149/1.1837035.
  • 5Sangster,M.J.L.; Dixon,M.Adv.Phys.1976,25(3),247.doi: 10.1080/00018737600101392.
  • 6Okamoto,Y.; Madden,P.A.; Minato,K.J.Nucl.Mater.2005,344(1-3),109.doi: 10.1016/j.jnucmat.2005.04.026.
  • 7Okamoto,Y.; Kobayashi,F.; Ogawa,T.J.Alloy.Compd.1998,271-273,355.doi: 10.1016/S0925-8388[98)00087-5.
  • 8Okamoto,Y.; Madden,P.A.J.Phys.Chem.Solids 2005,66(2-4),448.doi: 10.1016/j.jpcs.2004.06.038.
  • 9Okamoto,Y.; Hayashi,H.; Ogawa,T.J.Nucl.Mater.1997,247,86.doi: 10.1016/S0022-3115[97)00094-9.
  • 10Abramo,M.C.; Caccamo,C.Journal of Physics: Condensed Matter 1994,6(24),4405.doi: 10.1088/0953-8984/6/24/003.

共引文献11

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部