期刊文献+

MLD-MPC Approach for Three-Tank Hybrid Benchmark Problem

下载PDF
导出
摘要 The present paper aims at validating a Model Predictive Control(MPC),based on the Mixed Logical Dynamical(MLD)model,for Hybrid Dynamic Systems(HDSs)that explicitly involve continuous dynamics and discrete events.The proposed benchmark system is a three-tank process,which is a typical case study of HDSs.The MLD-MPC controller is applied to the level control of the considered tank system.The study is initially focused on the MLD approach that allows consideration of the interacting continuous dynamics with discrete events and includes the operating constraints.This feature of MLD modeling is very advantageous when an MPC controller synthesis for the HDSs is designed.Once the MLD model of the system is well-posed,then the MPC law synthesis can be developed based on the Mixed Integer Programming(MIP)optimization problem.For solving this MIP problem,a Branch and Bound(B&B)algorithm is proposed to determine the optimal control inputs.Then,a comparative study is carried out to illustrate the effectiveness of the proposed hybrid controller for the HDSs compared to the standard MPC approach.Performances results show that the MLD-MPC approach outperforms the standardMPCone that doesn’t consider the hybrid aspect of the system.The paper also shows a behavioral test of the MLDMPC controller against disturbances deemed as liquid leaks from the system.The results are very satisfactory and show that the tracking error is minimal less than 0.1%in nominal conditions and less than 0.6%in the presence of disturbances.Such results confirm the success of the MLD-MPC approach for the control of the HDSs.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第5期3657-3675,共19页 计算机、材料和连续体(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部