期刊文献+

Magnetic-conductive bi-gradient structure design of CP/PGFF/Fe 3 O 4 composites for highly absorb e d EMI shielding and balanced mechanical strength 被引量:2

原文传递
导出
摘要 Developing excellent absorption-dominant electromagnetic interference(EMI)shielding composites is an urgent demand for the rapid development of 5 G technology and electronic equipment.Herein,a simple strategy is employed to fabricate carbon nanotubes-polypropylene fibers(CP)/polypropylene-glass fibers felt(PGFF)/Fe 3 O 4 composites with superior EMI shielding effectiveness and low reflection due to the magnetic-conductive bi-gradient structure which is naturally formed by deposition during the vacuum-assisted filtration process.The difference in dimensionality between one-dimensional CNT with outstand-ing electrical conductivity and zero-dimensional magnetic Fe 3 O 4 nanoparticles is the theoretical basis for the successful construction of the magnetic-conductive bi-gradient structure in a gap-rich PGFF matrix that endows the composites with“absorb-reflect-reabsorb”EMI shieldingmechanism.Whentheelectro-magnetic waves are incident from the magnetic layer,the EMI shielding effectiveness(SE)reaches 48.9 dB as the weight percentage of the conductive layer increases,more importantly,the reflection coefficients are reduced by more than 0.32 compared with that of another incident pattern.What’s more,the re-sultant composites exhibit an outstanding signal shielding function in the application.This work paves a convenient pathway for designing a magnetic-conductive bi-gradient structure and efficient absorbing EMI shielding composites applied in the next-generated electronic information and communication field.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期102-110,共9页 材料科学技术(英文版)
基金 supported by the Key Research Pro-gram of Zhejiang Province(No.2020C01010) the Natural Science Foundation of Zhejiang Province(No.LY20E030008) the Na-tional Natural Science Foundation of China(No.21504078).
  • 相关文献

同被引文献34

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部