期刊文献+

融入依存句法信息的事件时序关系识别 被引量:1

Event Temporal Relation Identification with Dependency Information
下载PDF
导出
摘要 事件时序关系识别有助于读者理清文章脉络,把握全局发展趋势,是重要的自然语言理解任务之一。现有的事件时序关系识别方法专注于提取事件触发词前后的局部信息,然而事件句中的事件信息分布较为分散,导致模型在编码过程中丢失部分事件信息。针对上述问题,针对文本特征提出一种双路依存注意力机制来聚合事件句信息,通过单词的父子节点信息构建出双路依存矩阵,将句法信息融入到词嵌入中。将该机制与双向长短期记忆网络(bidirectional long short term memory,Bi-LSTM)结合,可以使事件时序关系模型的性能得到显著提高。该文在越南语数据集与英语数据集上进行对比实验,结果表明所提方法优于主流的神经网络方法。 Event temporal relation identification is an important natural language understanding task.This task helps readers to analyze the content of the article and clarify the development of events.Most of existing event temporal relation identification methods focus on extracting the semantic information around the trigger,but the information in the event sentence is relatively scattered,which leads the model to lose part of the event information.To address the above problems,a bidirectional dependency attention mechanism is proposed to aggregate event information.A bidirectional dependency matrix is constructed based on the parent-child node information of words,and syntactic information is integrated into word embeddings.Combining this mechanism with Bi-LSTM(bidirectional long short term memory)network,this model can significantly improve the performance of event temporal relation identification.It conducts comparative experiments on Vietnamese datasets and English datasets,the results show that this method is superior to the mainstream neural network methods.
作者 李良毅 张亚飞 郭军军 高盛祥 余正涛 LI Liangyi;ZHANG Yafei;GUO Junjun;GAO Shengxiang;YU Zhengtao(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Key Laboratory ofArtificial Intelligence,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第7期110-117,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61762056,61972186,61732005,61761026) 国家重点研发计划(2018YFC0830105,2018YFC0830101,2018YFC0830100) 云南高科技人才项目(201606) 云南省重大科技专项计划(202002AD080001-5) 云南省基础研究计划(202001AS070014,2018FB104)。
关键词 事件时序关系 注意力机制 事件关系识别 对抗训练 依存句法 event temporal relation self-attention mechanism event relation identification adversarial training dependency parsing
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部