期刊文献+

加总偏误的Castle-Ⅳ校正与数值模拟

Castle-Ⅳ Correction for Aggregation Bias and Numerical Simulation
下载PDF
导出
摘要 在加总过程内生性产生的两类单一内生节点和两类多内生节点情形基础上,文章利用Castle过程构建多重Ⅳ,并采用蒙特卡洛方法对多重Ⅳ的加总偏误校正效果进行比较分析。结果发现,单一有效Ⅳ、单一弱Ⅳ和多重有效Ⅳ均有显著的加总偏误校正效果,而单一伪Ⅳ和多重伪Ⅳ依然存在明显的估计偏误。 Based on two types of single endogenous nodes and multiple endogenous nodes generated by the endogeneity of the aggregation process,this paper constructs multiple Ⅳs through Castle process,and comparatively analyzes the correction effect on the aggregation bias of multiple Ⅳs by using the Monte Carlo method.The results show that single effective Ⅳ,single weak Ⅳ and multiple effective Ⅳs all have significant aggregation bias correction effects,while single pseudo Ⅳ and multiple pseudo Ⅳs still have obvious estimation bias.
作者 覃琼霞 江涛 Qin Qiongxia;Jiang Tao(School of Economics and Management,Zhejiang Sci-Tech University;School of Economics and Management,China Jiliang University,Hangzhou 310018,China)
出处 《统计与决策》 CSSCI 北大核心 2023年第6期33-38,共6页 Statistics & Decision
基金 浙江省自然科学基金资助项目(LY20G010010) 教育部哲学社会科学研究后期资助项目(20JHQ060) 国家社会科学基金一般项目(18BJY040) 国家自然科学基金面上项目(1874161)。
关键词 加总偏误 Castle-Ⅳ校正 数值模拟 aggregation bias Castle-IV correction numerical simulation
  • 相关文献

参考文献4

二级参考文献41

  • 1江涛,覃琼霞.中日绿茶贸易中的技术性贸易壁垒度量[J].茶叶科学,2010,30(4):322-327. 被引量:9
  • 2李捷瑜.股票收益与交易量的动态关系研究来自不同估计方法的证据[J].南方经济,2006,35(1):94-104. 被引量:2
  • 3Allan Timmermann, 2005, Forecast Combinations [J], UCSD, August 27.
  • 4Arnold Zellner, 1962, An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias [J], Journal of the American Statistical Association, Vol. 57, No. 297 (Jun), 348~368.
  • 5Barker T. and Pesaran M. H. , 1990, Disaggregation in Econometric Modelling[M], Routledge, London and New York.
  • 6Bernard, Redding and Schott, 2005, Products and Productivity [R], NBER Working Paper, No. W11575.
  • 7Greene, W. and T. Seaks, 1991, The Restricted Least Squares Estimator: A Pedagogical Note [J], Review of Economics and Statistics, Vol. 73, 563-567.
  • 8Greg M. Allenby, Peter E. Rossi, 1991, There is No Aggregation Bias: Why Macro Logit Models Work [J], Journal of Business & Economic Statistics, January, Vol. 9, No. 1, 1~14.
  • 9Hongjun Yan, 2010, Is Noise Trading Cancelled Out by Aggregation? [R] Yale ICF Working Paper, 08~10.
  • 10Luciano Pieraccini, 2005, Is Aggregation Ever Necessary? [J], Quaderni di Statistica, Vol. 7.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部