期刊文献+

利用稠密结构特征的航空影像与LiDAR数据配准 被引量:3

Registration of Aerial Images and LiDAR Data via Dense Structural Features
下载PDF
导出
摘要 针对航空影像与激光雷达点云数据间存在显著的几何畸变和辐射差异导致难以精确配准的问题,提出了一种基于几何约束和稠密结构特征的自动配准方法。该方法包括粗配准和精配准两个阶段。粗配准通过基于分块FAST算子的特征点提取和局部几何校正两个步骤,消除影像间明显的尺度和旋转差异。在精配准阶段,首先构建了一个结合一阶和二阶梯度信息的新描述符(second-and first-order channel features of orientated gradients,S-CFOG)来提取影像间稠密的结构特征,然后在频率域采用三维相位相关作为相似性度量进行同名点匹配。最后,利用同名点对外方位元素进行精化,实现对这两类数据的精配准。通过两组不同覆盖场景的数据进行实验,结果表明,该方法可达到1~2个像素的配准精度。 Aiming at the problem of difficult co-registration between aerial imagery and light detection and ranging(LiDAR)data due to the significant geometric distortions and intensity differences,an automatic registration method based on geometric constraints and dense structural features is proposed,which includes two stages:coarse and fine registration.In coarse registration,the obvious scale and rotation differences between images are eliminated by two steps:feature point extraction based on block-FAST operator and local geometric correction.In fine registration,a novel descriptor combining first-and second-order gradient information,named second-and first-order channel features of orientated gradients(S-CFOG)is first constructed to extract dense structure features of images,and then the three-dimensional phase correlation is used as the similarity measure to detect correspondences in the frequency domain.Finally,the obtained correspondences are not only employed to refine the exterior orientation parameters but also used to achieve the fine registration of the two types of data.Experiments are performed by two sets of aerial images and LiDAR data,and the results show that the proposed method achieves the registration accuracy within the range of one to two pixels.
作者 黄磊 朱柏 游晋卿 廖永福 葛旭明 HUANG Lei;ZHU Bai;YOU Jinqing;LIAO Yongfu;GE Xuming(Power China Jiangxi Electric Power Design Institute Co.Ltd.,Nanchang 330096,China;Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 611756,China)
出处 《遥感信息》 CSCD 北大核心 2023年第1期56-62,共7页 Remote Sensing Information
基金 中国电力建设股份有限公司2020—2021年度重点科技项目(DJ-ZDXM-2020-61) 国家自然科学基金项目(41971281)。
关键词 航空影像 LIDAR 配准 几何约束 稠密结构特征 S-CFOG aerial image LiDAR registration geometric constraint dense structural feature S-CFOG
  • 相关文献

参考文献10

二级参考文献68

共引文献108

同被引文献65

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部