期刊文献+

基于蚁群优化神经网络的路基沉降量预测 被引量:1

Prediction of subgrade sedimentation based on ant colony optimization neural network
下载PDF
导出
摘要 原有神经网络中自变量数据输入过多时易出现拟合过度征象,从而降低展望模型的准确度。采取蚁群优化神经网络(ACOBP)模型的权值和阈值,经由实测仿真计算,结果表明ACOBP模型的精确度和效果均优于传统神经网络。 When there is too much input of independent variable data in the original neural network,it is easy to appear signs of overfitting,which reduces the accuracy of the prospect model.The weights and thresholds of the ACOBP model are taken,and the results are calculated by actual measurement simulation,and the results show that the accuracy and effect of the ACOBP model are better than those of the traditional neural network.
作者 安智敏 闫显亮 徐毅 AN Zhimin;YAN Xianliang;XU Yi(Shandong Provincial Communications Planning and Design Institute Group Co.,Ltd.,Shandong Jinan 250101 China)
出处 《山东交通科技》 2023年第1期96-97,136,共3页
关键词 蚁群优化神经网络 蚁群算法 BP神经网络 路基沉降量 ACOBP ACO BP neural network subgrade settlement
  • 相关文献

参考文献3

二级参考文献25

共引文献33

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部