期刊文献+

基于CNN和多注意力机制的XSS检测模型 被引量:1

XSS Detection Model Based on CNN and Multi-attention Mechanism
下载PDF
导出
摘要 为了解决普通深度学习模型存在的难以区分信息重要性差异,以及单一注意力机制存在的关注维度单一的问题,文中提出了一种基于卷积神经网络和多注意力机制的模型对XSS攻击进行检测。首先,将经过word2vec转换后的数据输入到卷积神经网络提取局部特征;然后,使用自注意力模块学习数据的长距离依赖关系,并加强模型对序列维度上重要特征的关注;接着,经过通道注意力模块从通道维度对不同的通道特征图加权;之后,将经注意力模块处理过的特征输入到池化层进行下采样处理,并使用Dropout层提高模型的泛化能力;最后,利用提取到的特征对样本进行分类。使用测试数据集对文中提出的模型进行实验,结果显示,该模型对XSS攻击的检测效果良好,准确率与F1值相比其他深度学习模型有一定程度提升。 In order to solve the problems that ordinary deep learning models are difficult to distinguish the difference of the importance of information,and the attention dimension of single attention mechanism is single,a model based on convolutional neural network and multi-attention mechanism is proposed to detect XSS attacks.Firstly,the data converted by word2vec are input into convolutional neural network to extract local features.Then,the self attention module is used to learn the long-distance dependencies of the data and strengthen the model’s attention on the important features in the sequence dimension.Next,through the channel attention module,different channel feature maps are weighted from the channel dimension.After that,the features processed by the attention modules are input into the pooling layer for down-sampling,and the Dropout layer is used to improve the generalization ability of the model.Finally,the extracted features are used to classify the samples.The test data set is used to test the proposed model,the results show that the model has a good detection effect on XSS attacks,the accuracy and F1 values are improved to a certain extent compared with other deep learning models.
作者 关慧 曹同洲 GUAN Hui;CAO Tong-zhou(School of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China;Liaoning Province Key Laboratory of Industrial Intelligence Technology on Chemical Process,Shenyang 110142,China)
出处 《计算机技术与发展》 2023年第4期175-181,共7页 Computer Technology and Development
基金 辽宁省2021年度教育科学研究经费项目(LJKZ0434)。
关键词 卷积神经网络 多注意力机制 XSS攻击 word2vec 自注意力 通道注意力 convolutional neural network multi-attention mechanism XSS attacks word2vec self attention channel attention
  • 相关文献

参考文献17

二级参考文献86

  • 1钟晨鸣,徐少培.Web前端黑客技术揭秘[M].北京:电子工业出版社,2013.
  • 2OWASP. Category : OWASP TopTen Project[ EB/OL] . https;//www.owasp. org/index. php/Category : OWASP _ Top _ Ten _ Project 2013 ,6,12.
  • 3Ceponis J, Ceponiene L, Venckauskas A, et al. Evaluation of OpenSource Server-Side XSS Protection Solutions [ M ]//Information andSoftware Technologies. Springer Berlin Heidelberg,2013 :345 -356.
  • 4Shar L K,Tan H B K. Automated removal of cross site scripting vulner-abilities in web applications[ J]. Information and Software Technology,2012,54(5) :467~478.
  • 5Fonseca J, Matarese F. Using Vulnerability Injection to Improve WebSecurityf M]//Innovative Technologies for Dependable OTS-Based.
  • 6Critical Systems[ M]. Springer Milan,2013:145 _ 157.
  • 7Kals S,Kirda E,Kruegel C,et al. Secubat. a web vulnerability scanner[C ] //Proceedings of the 15th international conference on World WideWeb. ACM ,2006:247 -256.
  • 8Ceponis J, Ceponiene L, Venckauskas A,et al. Evaluation of OpenSource Server-Side XSS Protection Solutions [ M ]//Information andSoftware Technologies. Springer Berlin Heidelberg ,2013 :345 ~ 356.
  • 9Du Y J,Pen Q Q,Gao Z Q. A topic-specific crawling strategy based onsemantics similarity[ J]. Data & Knowledge Engineering,2013,88 :75- 93.
  • 10沈寿忠,张玉清.基于爬虫的XSS漏洞检测工具设计与实现[J].计算机工程,2009,35(21):151-154. 被引量:28

共引文献150

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部