期刊文献+

图的邻点全和可区别全染色 被引量:1

Neighbor full sum distinguishing total coloring of graphs
下载PDF
导出
摘要 设f:V(G)∪E(G)→{1,2,…,k}是图G的一个正常k-全染色。令φ(x)=f(x)+eЭx/∑f(e)+∑y∈N(x)/∑f(y),其中N(x)={y∈V(G)|xy∈E(G)}。对任意的边uv∈E(C),若有Φ(u)≠Φ(v)成立,则称f是图G的一个邻点全和可区别k-全染色。图G的邻点全和可区别全染色中最小的颜色数k叫做G的邻点全和可区别全色数,记为f tndi∑(G)。本文确定了路、圈、星、轮、完全二部图、完全图以及树的邻点全和可区别全色数,同时猜想:简单图G(≠K2)的邻点全和可区别全色数不超过△(G)+2。 Let f:V(G)∪E(G)→{1,2,…,k}be a proper k-total coloring of G.Set φ(x)=f(x)+eЭx/∑f(e)+∑y∈N(x)/∑f(y) where N(x)={y∈V(G)|xy∈E(G)}.IfΦ(u)≠Φ(v)for any edge uv∈E(G),then.f is called a k-neighbor full sum distinguishing total coloring of G.The smallest value k for which G has such a coloring is called the neighbor full sum distinguishing total chromatic number of G and denoted by ftndi∑(G).In this paper,we obtain this parameter for paths,cycles,stars,wheels,complete bipartite graphs,complete graphs and trees.Meanwhile,we conjecture that the neighbor full sum distinguishing total chromatic number of C(≠K2)is not more than△(G)+2.
作者 崔福祥 杨超 叶宏波 姚兵 CUI Fuxiang;YANG Chao;YE Hongbo;YAO Bing(School of Mathematics,Physicsand Statistics,Shanghai University of Engineering Science,Shanghai 201620,China;Center of Intelligent Computing and Applied Statistics,Shanghai University of Engineering Science,Shanghai 201620,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处 《运筹学学报》 CSCD 北大核心 2023年第1期149-158,共10页 Operations Research Transactions
基金 国家自然科学基金(Nos.61163054,61363060,61662066)。
关键词 正常全染色 可区别染色 邻点全和可区别全染色 邻点全和可区别全色数 proper total coloring distinguishing coloring neighbor full sum distinguishing total coloring neighbor full sum distinguishing total chromatic number
  • 相关文献

参考文献4

二级参考文献15

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2[1]Behzad. Graph and Their Chromatic Number[D]. New York: Michigan State University,1965.
  • 3[2]Bondy J A,Murty U S R. Graph theory with applications[M]. London: Mcmillan Press Ltd,1976.
  • 4[3]Vijayditya N.On total chromatic number of a graph[J]. J London Math Soc, 1971,3(2):405-408.
  • 5[4]Harary F. Graph theory[M]. New York: Addision-weley Academic Press,1967.
  • 6[5]Abdon Sanchenez. Determining the total colouring number is NP-hard[J]. Discrete Math,1989,78(3):315-319.
  • 7[6]Behzad M, Mahmoodian S E. On topological invariants of the products of graphs[J]. Can Math Bull,1969,12(2):157-166.
  • 8[7]Capobianco M,Molluzzo J. Examples and counterexamples in graph theory[M]. New York: North-Holland, 1978.
  • 9Behzad M.Graph and their chromatic numder[D].Michigan:Michigan State University,1965:1-20.
  • 10Bondy J A,Murty U S R.Graph theory with applica-tions[M].London:Mcmillan Press,1976:97-141.

共引文献198

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部